Pre	face		page xv
Acl	cnov	vledgments	xix
ı	Α	Preview	ı
	Α	A Brief Historical Perspective of Transport Phenomena in	
		Chemical Engineering	1
	В	The Nature of the Subject	2
	С	A Brief Description of the Contents of This Book	4
		otes and References	11
2	Ва	sic Principles	13
	Α	The Continuum Approximation	13
		I Foundations	14
		2 Consequences	15
	В	Conservation of Mass – The Continuity Equation	18
	С	Newton's Laws of Mechanics	25
	D	Conservation of Energy and the Entropy Inequality	31
	Ε	Constitutive Equations	36
	F	Fluid Statics – The Stress Tensor for a Stationary Fluid	37
	G	The Constitutive Equation for the Heat Flux Vector – Fourier's	
		Law	42
	Η	Constitutive Equations for a Flowing Fluid – The Newtonian Fluid	45
	1	The Equations of Motion for a Newtonian Fluid – The	
		Navier–Stokes Equation	49
	J	Complex Fluids – Origins of Non-Newtonian Behavior	52
	K	•	59
	L	Boundary Conditions at Solid Walls and Fluid Interfaces	65
		I The Kinematic Condition	67
		2 Thermal Boundary Conditions	68
		3 The Dynamic Boundary Condition	69
	M	Further Considerations of the Boundary Conditions at the	
		Interface Between Two Pure Fluids – The Stress Conditions	74
		I Generalization of the Kinematic Boundary Condition for an	
		Interface	75
		2 The Stress Conditions 3 The Newsel Stress Polence and Confilence Flouring	76 79
		The Normal-Stress Balance and Capillary Flows	79 84
		4 The Tangential-Stress Balance and Thermocapillary Flows	04

	Ν	The Role of Surfactants in the Boundary Conditions at	
		a Fluid Interface	89
	Not	tes and Reference	96
		blems	99
3		idirectional and One-Dimensional Flow and Heat Transfer	110
	· .	Simplification of the Navier–Stokes Equations for Unidirectional	
	Α	Flows	113
	В	Steady Unidirectional Flows – Nondimensionalization and	
		Characteristic Scales	115
	С	Circular Couette Flow – A One-Dimensional Analog to	
	_	Unidirectional Flows	125
	D	Start-Up Flow in a Circular Tube – Solution by Separation	
		of Variables	135
	Ε	The Rayleigh Problem – Solution by Similarity Transformation	142
	F	Start-Up of Simple Shear Flow	148
	G	Solidification at a Planar Interface	152
	Н	Heat Transfer in Unidirectional Flows	157
	• • •	I Steady-State Heat Transfer in Fully Developed Flow through a	
		Heated (or Cooled) Section of a Circular Tube	158
		2 Taylor Diffusion in a Circular Tube	166
	ı	Pulsatile Flow in a Circular Tube	175
	No	otes	183
	Pro	oblems .	185
4	۸,	n Introduction to Asymptotic Approximations	204
7	A	Pulsatile Flow in a Circular Tube Revisited – Asymptotic Solutions	
	^	for High and Low Frequencies	205
		I Asymptotic Solution for $R_{\omega} \ll 1$	206
		2 Asymptotic Solution for $R_{\omega} \gg 1$	209
	В	Asymptotic Expansions – General Considerations	216
	c	The Effect of Viscous Dissipation on a Simple Shear Flow	219
	D	The Motion of a Fluid Through a Slightly Curved Tube – The Dean	
	_	Problem	224
	Ε	Flow in a Wavy-Wall Channel – "Domain Perturbation Method"	232
	-	I Flow Parallel to the Corrugation Grooves	233
		2 Flow Perpendicular to the Corrugation Grooves	237
	F	Diffusion in a Sphere with Fast Reaction – "Singular Perturbation	
		Theory"	242
	G	Bubble Dynamics in a Quiescent Fluid	250
		I The Rayleigh-Plesset Equation	251
		2 Equilibrium Solutions and Their Stability	255
		3 Bubble Oscillations Due to Periodic Pressure Oscillations -	
		Resonance and "Multiple-Time-Scale Analysis"	260
		4 Stability to Nonspherical Disturbances	269
		otes	282
	Pr	oblems	284
5	Т	he Thin-Gap Approximation – Lubrication Problems	294
_	A		295
		The Narrow-Gap Limit — Governing Equations and Solutions	297

	D	2 Lubrication Forces	303
	В	Derivation of the Basic Equations of Lubrication Theory	306
	С	Applications of Lubrication Theory	315
		The Slider-Block Problem	315
		2 The Motion of a Sphere Toward a Solid, Plane	
	_	Boundary	320
	D	The Air Hockey Table	325
		I The Lubrication Limit, \tilde{R} e \ll I	328
		2 The Uniform Blowing Limit, $p_R^* \gg 1$	332
		a Ře≪ l	334 336
		b Re≫ I	345
	No	c Lift on the Disk	
			346
	Pro	blems	347
6	Th	e Thin-Gap Approximation – Films with a Free Surface	355
	Α	Derivation of the Governing Equations	355
		I The Basic Equations and Boundary Conditions	355
		2 Simplification of the Interface Boundary Conditions for	
		a Thin Film	359
		3 Derivation of the Dynamical Equation for the Shape Function,	
		$h(\mathbf{x}_s,t)$	360
	В	Self-Similar Solutions of Nonlinear Diffusion Equations	362
	С	Films with a Free Surface – Spreading Films on a Horizontal	
		Surface	367
		I Gravitational Spreading	367
		2 Capillary Spreading	371
	D	The Dynamics of a Thin Film in the Presence of van der Waals	
		Forces	376
		1 Linear Stability	378
		2 Similarity Solutions for Film Rupture	381
	E	Shallow-Cavity Flows	385
		I The Horizontal, Enclosed Shallow Cavity	386
		2 The Horizontal Shallow Cavity with a Free Surface	391
		a Solution by means of the classical thin-film analysis	392
		b Solution by means of the method of domain perturbations	396
		c The end regions	401
		3 Thermocapillary Flow in a Thin Cavity	404
		a Thin-film solution procedure	410
		b Solution by domain perturbation for $\delta=1$	413
	No		418
	Pro	blems	418
7	Cr	eeping Flow – Two-Dimensional and Axisymmetric Problems	429
•	A	Nondimensionalization and the Creeping-Flow Equations	430
	В	Some General Consequences of Linearity and the Creeping-Flow	150
	U	Equations	434
		· ·	73 7
		The Drag on Bodies That Are Mirror Images in the Direction of Motion	434
		2 The Lift on a Sphere That is Rotating in a Simple Shear Flow	436
		3 Lateral Migration of a Sphere in Poiseuille Flow	438
		4 Resistance Matrices for the Force and Torque on a Body in	,50
		Creeping Flow	439

	C	Representation of Two-Dimensional and Axisymmetric Flows in	
		Terms of the Streamfunction	444
	D	Two-Dimensional Creeping Flows: Solutions by Means of	
		Eigenfunction Expansions (Separation of Variables)	449
		I General Eigenfunction Expansions in Cartesian and Cylindrical	
		Coordinates	449
		2 Application to Two-Dimensional Flow near Corners	451
	E	Axisymmetric Creeping Flows: Solution by Means of Eigenfunction	
		Expansions in Spherical Coordinates (Separation of Variables)	458
		I General Eigenfunction Expansion	459
		2 Application to Uniform Streaming Flow past an Arbitrary	444
		Axisymmetric Body	464
	F	Uniform Streaming Flow past a Solid Sphere – Stokes' Law	466
	G	A Rigid Sphere in Axisymmetric, Extensional Flow	470
		I The Flow Field	470
		2 Dilute Suspension Rheology – The Einstein Viscosity	473
		Formula	473
	Н	Translation of a Drop Through a Quiescent Fluid at Low Re	477
	1	Marangoni Effects on the Motion of Bubbles and Drops	486
	J	Surfactant Effects on the Buoyancy-Driven Motion	
		of a Drop	490
		I Governing Equations and Boundary Conditions for a	400
		Translating Drop with Surfactant Adsorbed at the Interface	493
		2 The Spherical-Cap Limit	497 503
	N.I	3 The Limit of Fast Adsorption Kinetics	510
	No		
	Pro	blems	512
8	Cr	eeping Flow – Three-Dimensional Problems	524
	Α	Solutions by Means of Superposition of Vector Harmonic	
		Functions	FOF
			525
		l Preliminary Concepts	525 525
		I Preliminary Concepts a Vector "equality" – pseudo-vectors	
			525 525
		 Vector "equality" – pseudo-vectors Representation theorem for solution of the creeping-flow equations 	525 525 526
		 a Vector "equality" – pseudo-vectors b Representation theorem for solution of the creeping-flow equations c Vector harmonic functions 	525 525 526 527
		 a Vector "equality" – pseudo-vectors b Representation theorem for solution of the creeping-flow equations c Vector harmonic functions 2 The Rotating Sphere in a Quiescent Fluid 	525 525 526 527 528
		 a Vector "equality" – pseudo-vectors b Representation theorem for solution of the creeping-flow equations c Vector harmonic functions 2 The Rotating Sphere in a Quiescent Fluid 3 Uniform Flow past a Sphere 	525 525 526 527 528 529
	В	 a Vector "equality" – pseudo-vectors b Representation theorem for solution of the creeping-flow equations c Vector harmonic functions 2 The Rotating Sphere in a Quiescent Fluid 3 Uniform Flow past a Sphere A Sphere in a General Linear Flow 	525 525 526 527 528 529 530
	C	 a Vector "equality" – pseudo-vectors b Representation theorem for solution of the creeping-flow equations c Vector harmonic functions 2 The Rotating Sphere in a Quiescent Fluid 3 Uniform Flow past a Sphere A Sphere in a General Linear Flow Deformation of a Drop in a General Linear Flow 	525 525 526 527 528 529 530 537
		 a Vector "equality" – pseudo-vectors b Representation theorem for solution of the creeping-flow equations c Vector harmonic functions 2 The Rotating Sphere in a Quiescent Fluid 3 Uniform Flow past a Sphere A Sphere in a General Linear Flow Deformation of a Drop in a General Linear Flow Fundamental Solutions of the Creeping-Flow Equations 	525 525 526 527 528 529 530
	C	a Vector "equality" – pseudo-vectors b Representation theorem for solution of the creeping-flow equations c Vector harmonic functions 2 The Rotating Sphere in a Quiescent Fluid 3 Uniform Flow past a Sphere A Sphere in a General Linear Flow Deformation of a Drop in a General Linear Flow Fundamental Solutions of the Creeping-Flow Equations I The "Stokeslet": A Fundamental Solution for the	525 525 526 527 528 529 530 537 545
	C	a Vector "equality" – pseudo-vectors b Representation theorem for solution of the creeping-flow equations c Vector harmonic functions 2 The Rotating Sphere in a Quiescent Fluid 3 Uniform Flow past a Sphere A Sphere in a General Linear Flow Deformation of a Drop in a General Linear Flow Fundamental Solutions of the Creeping-Flow Equations 1 The "Stokeslet": A Fundamental Solution for the Creeping-Flow Equations	525 525 526 527 528 529 530 537
	C	 a Vector "equality" – pseudo-vectors b Representation theorem for solution of the creeping-flow equations c Vector harmonic functions 2 The Rotating Sphere in a Quiescent Fluid 3 Uniform Flow past a Sphere A Sphere in a General Linear Flow Deformation of a Drop in a General Linear Flow Fundamental Solutions of the Creeping-Flow Equations 1 The "Stokeslet": A Fundamental Solution for the Creeping-Flow Equations 2 An Integral Representation for Solutions of the Creeping-Flow 	525 525 526 527 528 529 530 537 545
	C D	 a Vector "equality" – pseudo-vectors b Representation theorem for solution of the creeping-flow equations c Vector harmonic functions 2 The Rotating Sphere in a Quiescent Fluid 3 Uniform Flow past a Sphere A Sphere in a General Linear Flow Deformation of a Drop in a General Linear Flow Fundamental Solutions of the Creeping-Flow Equations 1 The "Stokeslet": A Fundamental Solution for the Creeping-Flow Equations 2 An Integral Representation for Solutions of the Creeping-Flow Equations due to Ladyzhenskaya 	525 525 526 527 528 529 530 537 545
	C	 a Vector "equality" – pseudo-vectors b Representation theorem for solution of the creeping-flow equations c Vector harmonic functions 2 The Rotating Sphere in a Quiescent Fluid 3 Uniform Flow past a Sphere A Sphere in a General Linear Flow Deformation of a Drop in a General Linear Flow Fundamental Solutions of the Creeping-Flow Equations 1 The "Stokeslet": A Fundamental Solution for the Creeping-Flow Equations 2 An Integral Representation for Solutions of the Creeping-Flow Equations due to Ladyzhenskaya Solutions for Solid Bodies by Means of Internal Distributions of 	525 525 526 527 528 529 530 537 545 545
	C D	 a Vector "equality" – pseudo-vectors b Representation theorem for solution of the creeping-flow equations c Vector harmonic functions 2 The Rotating Sphere in a Quiescent Fluid 3 Uniform Flow past a Sphere A Sphere in a General Linear Flow Deformation of a Drop in a General Linear Flow Fundamental Solutions of the Creeping-Flow Equations 1 The "Stokeslet": A Fundamental Solution for the Creeping-Flow Equations 2 An Integral Representation for Solutions of the Creeping-Flow Equations due to Ladyzhenskaya Solutions for Solid Bodies by Means of Internal Distributions of Singularities 	525 525 526 527 528 529 530 537 545
	C D	 a Vector "equality" – pseudo-vectors b Representation theorem for solution of the creeping-flow equations c Vector harmonic functions 2 The Rotating Sphere in a Quiescent Fluid 3 Uniform Flow past a Sphere A Sphere in a General Linear Flow Deformation of a Drop in a General Linear Flow Fundamental Solutions of the Creeping-Flow Equations 1 The "Stokeslet": A Fundamental Solution for the Creeping-Flow Equations 2 An Integral Representation for Solutions of the Creeping-Flow Equations due to Ladyzhenskaya Solutions for Solid Bodies by Means of Internal Distributions of Singularities I Fundamental Solutions for a Force Dipole and Other 	525 525 526 527 528 529 530 537 545 545 547
	C D	 a Vector "equality" – pseudo-vectors b Representation theorem for solution of the creeping-flow equations c Vector harmonic functions 2 The Rotating Sphere in a Quiescent Fluid 3 Uniform Flow past a Sphere A Sphere in a General Linear Flow Deformation of a Drop in a General Linear Flow Fundamental Solutions of the Creeping-Flow Equations 1 The "Stokeslet": A Fundamental Solution for the Creeping-Flow Equations 2 An Integral Representation for Solutions of the Creeping-Flow Equations due to Ladyzhenskaya Solutions for Solid Bodies by Means of Internal Distributions of Singularities I Fundamental Solutions for a Force Dipole and Other Higher-Order Singularities 	525 525 526 527 528 529 530 537 545 545 547 550
	C D	 a Vector "equality" – pseudo-vectors b Representation theorem for solution of the creeping-flow equations c Vector harmonic functions 2 The Rotating Sphere in a Quiescent Fluid 3 Uniform Flow past a Sphere A Sphere in a General Linear Flow Deformation of a Drop in a General Linear Flow Fundamental Solutions of the Creeping-Flow Equations 1 The "Stokeslet": A Fundamental Solution for the Creeping-Flow Equations 2 An Integral Representation for Solutions of the Creeping-Flow Equations due to Ladyzhenskaya Solutions for Solid Bodies by Means of Internal Distributions of Singularities 1 Fundamental Solutions for a Force Dipole and Other Higher-Order Singularities 2 Translation of a Sphere in a Quiescent Fluid (Stokes' Solution) 	525 525 526 527 528 529 530 537 545 545 547
	C D	 a Vector "equality" – pseudo-vectors b Representation theorem for solution of the creeping-flow equations c Vector harmonic functions 2 The Rotating Sphere in a Quiescent Fluid 3 Uniform Flow past a Sphere A Sphere in a General Linear Flow Deformation of a Drop in a General Linear Flow Fundamental Solutions of the Creeping-Flow Equations 1 The "Stokeslet": A Fundamental Solution for the Creeping-Flow Equations 2 An Integral Representation for Solutions of the Creeping-Flow Equations due to Ladyzhenskaya Solutions for Solid Bodies by Means of Internal Distributions of Singularities I Fundamental Solutions for a Force Dipole and Other Higher-Order Singularities 	525 525 526 527 528 529 530 537 545 545 547 550

		4 Uniform Flow past a Prolate Spheroid5 Approximate Solutions of the Creeping-Flow Equations by	557
		Means of Slender-Body Theory	560
	F	The Boundary Integral Method	564
		I A Rigid Body in an Unbounded Domain	565
		2 Problems Involving a Fluid Interface	565
		3 Problems in a Bounded Domain	568
	G	Further Topics in Creeping-Flow Theory	570
		I The Reciprocal Theorem	57 I
		2 Faxen's Law for a Body in an Unbounded Fluid	571
		3 Inertial and Non-Newtonian Corrections to the Force	
		on a Body	573
		4 Hydrodynamic Interactions Between Widely Separated	
		Particles – The Method of Reflections	576
	No	tes	580
		oblems	582
			302
9	Co	onvection Effects in Low-Reynolds-Number Flows	593
	Α	Forced Convection Heat Transfer – Introduction	593
		I General Considerations	594
		2 Scaling and the Dimensionless Parameters for Convective	
		Heat Transfer	596
		3 The Analogy with Single-Solute Mass Transfer	598
	В	Heat Transfer by Conduction ($Pe \rightarrow 0$)	600
	С	Heat Transfer from a Solid Sphere in a Uniform Streaming Flow at	
		Small, but Nonzero, Peclet Numbers	602
		I Introduction – Whitehead's Paradox	602
		2 Expansion in the Inner Region	605
		3 Expansion in the Outer Region	606
		4 A Second Approximation in the Inner Region	611
		5 Higher-Order Approximations	613
		6 Specified Heat Flux	615
	D	Uniform Flow past a Solid Sphere at Small, but Nonzero, Reynolds	
		Number	616
	Е	Heat Transfer from a Body of Arbitrary Shape in a Uniform	
		Streaming Flow at Small, but Nonzero, Peclet Numbers	627
	F	Heat Transfer from a Sphere in Simple Shear Flow at Low	027
	,	Peclet Numbers	(22
	_		633
	G	Strong Convection Effects in Heat and Mass Transfer at Low	
		Reynolds Number – An Introduction	643
	Н	Heat Transfer from a Solid Sphere in Uniform Flow for $Re \ll 1$	
		and Pe ≫ I	645
		I Governing Equations and Rescaling in the Thermal	
		Boundary-Layer Region	648
		2 Solution of the Thermal Boundary-Layer Equation	652
	ı	Thermal Boundary-Layer Theory for Solid Bodies of Nonspherical	
		Shape in Uniform Streaming Flow	656
		I Two-Dimensional Bodies	659
		2 Axisymmetric Bodies	661
		3 Problems with Closed Streamlines (or Stream Surfaces)	662
	J	Boundary-Layer Analysis of Heat Transfer from a Solid Sphere in	
		Generalized Shear Flows at Low Reynolds Number	663

	K	Heat (or Mass) Transfer Across a Fluid Interface for Large Peclet	
		Numbers	666
		I General Principles	666
		2 Mass Transfer from a Rising Bubble or Drop in a Quiescent	
		Fluid	668
	L	Heat Transfer at High Peclet Number Across Regions of	
		Closed-Streamline Flow	671
		I General Principles	671
		2 Heat Transfer from a Rotating Cylinder in Simple Shear Flow	672
	No		680 681
	Pro	blems	001
10	La	minar Boundary-Layer Theory	697
	Α	Potential-Flow Theory	698
	В	The Boundary-Layer Equations	704
	С	Streaming Flow past a Horizontal Flat Plate – The Blasius	
		Solution	713
	D	Streaming Flow past a Semi-Infinite Wedge – The Falkner–Skan	
		Solutions	719
	Ε	Streaming Flow past Cylindrical Bodies – Boundary-Layer	
		Separation	725
	F	Streaming Flow past Axisymmetric Bodies – A Generalization	
		of the Blasius Series	733
	G	The Boundary-Layer on a Spherical Bubble	739
	No	rtes	754
	Pro	oblems	756
	Н	eat and Mass Transfer at Large Reynolds Number	767
11	_	eat and Mass Transfer at Large Reynolds Number Governing Equations ($Re \gg 1$, $Pe \gg 1$, with Arbitrary Pr or Sc	767
11	He A	Governing Equations (Re \gg 1, Pe \gg 1, with Arbitrary Pr or Sc	
11	Α	Governing Equations (Re \gg 1, Pe \gg 1, with Arbitrary Pr or Sc numbers)	769
11	A B	Governing Equations ($Re \gg I$, $Pe \gg I$, with Arbitrary Pr or Sc numbers) Exact (Similarity) Solutions for Pr (or Sc) $\sim O(I)$	769 771
11	A B C	Governing Equations ($Re \gg I$, $Pe \gg I$, with Arbitrary Pr or Sc numbers) Exact (Similarity) Solutions for Pr (or Sc) $\sim O(I)$ The Asymptotic Limit, Pr (or Sc) $\gg I$	769 771 773
11	A B C D	Governing Equations ($Re \gg I$, $Pe \gg I$, with Arbitrary Pr or Sc numbers) Exact (Similarity) Solutions for Pr (or Sc) $\sim O(I)$ The Asymptotic Limit, Pr (or Sc) $\gg I$ The Asymptotic Limit, Pr (or Sc) $\ll I$	769 771 773 780
11	A B C D E	Governing Equations ($Re \gg I$, $Pe \gg I$, with Arbitrary Pr or Sc numbers) Exact (Similarity) Solutions for Pr (or Sc) $\sim O(I)$ The Asymptotic Limit, Pr (or Sc) $\gg I$ The Asymptotic Limit, Pr (or Sc) $\ll I$ Use of the Asymptotic Results at Intermediate Pe (or Sc)	769 771 773
11	A B C D	Governing Equations ($Re \gg I$, $Pe \gg I$, with Arbitrary Pr or Sc numbers) Exact (Similarity) Solutions for Pr (or Sc) $\sim O(I)$ The Asymptotic Limit, Pr (or Sc) $\gg I$ The Asymptotic Limit, Pr (or Sc) $\ll I$ Use of the Asymptotic Results at Intermediate Pe (or Sc) Approximate Results for Surface Temperature with Specified Heat	769 771 773 780 787
11	A B C D E F	Governing Equations ($Re \gg I$, $Pe \gg I$, with Arbitrary Pr or Sc numbers) Exact (Similarity) Solutions for Pr (or Sc) $\sim O(I)$ The Asymptotic Limit, Pr (or Sc) $\gg I$ The Asymptotic Limit, Pr (or Sc) $\ll I$ Use of the Asymptotic Results at Intermediate Pe (or Sc) Approximate Results for Surface Temperature with Specified Heat Flux or Mixed Boundary Conditions	769 771 773 780
11	A B C D E	Governing Equations ($Re \gg I$, $Pe \gg I$, with Arbitrary Pr or Sc numbers) Exact (Similarity) Solutions for Pr (or Sc) $\sim O(I)$ The Asymptotic Limit, Pr (or Sc) $\gg I$ The Asymptotic Limit, Pr (or Sc) $\ll I$ Use of the Asymptotic Results at Intermediate Pe (or Sc) Approximate Results for Surface Temperature with Specified Heat Flux or Mixed Boundary Conditions Laminar Boundary-Layer Mass Transfer for Finite Interfacial	769 771 773 780 787
11	A B C D E F	Governing Equations ($Re \gg 1$, $Pe \gg 1$, with Arbitrary Pr or Sc numbers) Exact (Similarity) Solutions for Pr (or Sc) $\sim O(1)$ The Asymptotic Limit, Pr (or Sc) $\gg 1$ The Asymptotic Limit, Pr (or Sc) $\ll 1$ Use of the Asymptotic Results at Intermediate Pe (or Sc) Approximate Results for Surface Temperature with Specified Heat Flux or Mixed Boundary Conditions Laminar Boundary-Layer Mass Transfer for Finite Interfacial Velocities	769 771 773 780 787 788
11	A B C D E F	Governing Equations ($Re \gg I$, $Pe \gg I$, with Arbitrary Pr or Sc numbers) Exact (Similarity) Solutions for Pr (or Sc) $\sim O(I)$ The Asymptotic Limit, Pr (or Sc) $\gg I$ The Asymptotic Limit, Pr (or Sc) $\ll I$ Use of the Asymptotic Results at Intermediate Pe (or Sc) Approximate Results for Surface Temperature with Specified Heat Flux or Mixed Boundary Conditions Laminar Boundary-Layer Mass Transfer for Finite Interfacial	769 771 773 780 787
	B C D E F G No	Governing Equations ($Re \gg 1$, $Pe \gg 1$, with Arbitrary Pr or Sc numbers) Exact (Similarity) Solutions for Pr (or Sc) $\sim O(1)$ The Asymptotic Limit, Pr (or Sc) $\gg 1$ The Asymptotic Limit, Pr (or Sc) $\ll 1$ Use of the Asymptotic Results at Intermediate Pe (or Sc) Approximate Results for Surface Temperature with Specified Heat Flux or Mixed Boundary Conditions Laminar Boundary-Layer Mass Transfer for Finite Interfacial Velocities oftes	769 771 773 780 787 788 793 797 797
11	B C D E F G No Pro	Governing Equations ($Re \gg 1$, $Pe \gg 1$, with Arbitrary Pr or Sc numbers) Exact (Similarity) Solutions for Pr (or Sc) $\sim O(1)$ The Asymptotic Limit, Pr (or Sc) $\gg 1$ The Asymptotic Limit, Pr (or Sc) $\ll 1$ Use of the Asymptotic Results at Intermediate Pe (or Sc) Approximate Results for Surface Temperature with Specified Heat Flux or Mixed Boundary Conditions Laminar Boundary-Layer Mass Transfer for Finite Interfacial Velocities oftes oblems ydrodynamic Stability	769 771 773 780 787 788 793 797 797
	B C D E F G No	Governing Equations ($Re \gg I$, $Pe \gg I$, with Arbitrary Pr or Sc numbers) Exact (Similarity) Solutions for Pr (or Sc) $\sim O(I)$ The Asymptotic Limit, Pr (or Sc) $\gg I$ The Asymptotic Limit, Pr (or Sc) $\ll I$ Use of the Asymptotic Results at Intermediate Pe (or Sc) Approximate Results for Surface Temperature with Specified Heat Flux or Mixed Boundary Conditions Laminar Boundary-Layer Mass Transfer for Finite Interfacial Velocities objects objects objects ydrodynamic Stability Capillary Instability of a Liquid Thread	769 771 773 780 787 788 793 797 797 800 801
	B C D E F G No Pro	Governing Equations ($Re \gg I$, $Pe \gg I$, with Arbitrary Pr or Sc numbers) Exact (Similarity) Solutions for Pr (or Sc) $\sim O(I)$ The Asymptotic Limit, Pr (or Sc) $\gg I$ The Asymptotic Limit, Pr (or Sc) $\ll I$ Use of the Asymptotic Results at Intermediate Pe (or Sc) Approximate Results for Surface Temperature with Specified Heat Flux or Mixed Boundary Conditions Laminar Boundary-Layer Mass Transfer for Finite Interfacial Velocities oftes oblems ydrodynamic Stability Capillary Instability of a Liquid Thread 1 The Inviscid Limit	769 771 773 780 787 788 793 797 800 801 804
	B C D E F G No Pro	Governing Equations ($Re \gg I$, $Pe \gg I$, with Arbitrary Pr or Sc numbers) Exact (Similarity) Solutions for Pr (or Sc) $\sim O(I)$ The Asymptotic Limit, Pr (or Sc) $\gg I$ The Asymptotic Limit, Pr (or Sc) $\ll I$ Use of the Asymptotic Results at Intermediate Pe (or Sc) Approximate Results for Surface Temperature with Specified Heat Flux or Mixed Boundary Conditions Laminar Boundary-Layer Mass Transfer for Finite Interfacial Velocities oftes oblems ydrodynamic Stability Capillary Instability of a Liquid Thread I The Inviscid Limit 2 Viscous Effects on Capillary Instability	769 771 773 780 787 788 793 797 797 800 801 804 808
	B C D E F G No Pro	Governing Equations ($Re \gg I$, $Pe \gg I$, with Arbitrary Pr or Sc numbers) Exact (Similarity) Solutions for Pr (or Sc) $\sim O(I)$ The Asymptotic Limit, Pr (or Sc) $\gg I$ The Asymptotic Limit, Pr (or Sc) $\ll I$ Use of the Asymptotic Results at Intermediate Pe (or Sc) Approximate Results for Surface Temperature with Specified Heat Flux or Mixed Boundary Conditions Laminar Boundary-Layer Mass Transfer for Finite Interfacial Velocities Otes Other Stability Capillary Instability of a Liquid Thread I The Inviscid Limit 2 Viscous Effects on Capillary Instability 3 Final Remarks	769 771 773 780 787 788 793 797 800 801 804
	B C D E F G No Pro	Governing Equations ($Re \gg 1$, $Pe \gg 1$, with Arbitrary Pr or Sc numbers) Exact (Similarity) Solutions for Pr (or Sc) $\sim O(1)$ The Asymptotic Limit, Pr (or Sc) $\gg 1$ The Asymptotic Limit, Pr (or Sc) $\ll 1$ Use of the Asymptotic Results at Intermediate Pe (or Sc) Approximate Results for Surface Temperature with Specified Heat Flux or Mixed Boundary Conditions Laminar Boundary-Layer Mass Transfer for Finite Interfacial Velocities oftes oblems Yelocities Other Stability Capillary Instability of a Liquid Thread 1 The Inviscid Limit 2 Viscous Effects on Capillary Instability 3 Final Remarks Rayleigh—Taylor Instability (The Stability of a Pair of Immiscible	769 771 773 780 787 788 793 797 797 800 801 804 808 811
	B C D E F G No Pro	Governing Equations ($Re \gg 1$, $Pe \gg 1$, with Arbitrary Pr or Sc numbers) Exact (Similarity) Solutions for Pr (or Sc) $\sim O(1)$ The Asymptotic Limit, Pr (or Sc) $\gg 1$ The Asymptotic Limit, Pr (or Sc) $\ll 1$ Use of the Asymptotic Results at Intermediate Pe (or Sc) Approximate Results for Surface Temperature with Specified Heat Flux or Mixed Boundary Conditions Laminar Boundary-Layer Mass Transfer for Finite Interfacial Velocities oblems ydrodynamic Stability Capillary Instability of a Liquid Thread 1 The Inviscid Limit 2 Viscous Effects on Capillary Instability 3 Final Remarks Rayleigh—Taylor Instability (The Stability of a Pair of Immiscible Fluids That Are Separated by a Horizontal Interface)	769 771 773 780 787 788 793 797 797 800 801 804 808 811
	B C D E F G No Pro	Governing Equations ($Re \gg 1$, $Pe \gg 1$, with Arbitrary Pr or Sc numbers) Exact (Similarity) Solutions for Pr (or Sc) $\sim O(1)$ The Asymptotic Limit, Pr (or Sc) $\gg 1$ The Asymptotic Limit, Pr (or Sc) $\ll 1$ Use of the Asymptotic Results at Intermediate Pe (or Sc) Approximate Results for Surface Temperature with Specified Heat Flux or Mixed Boundary Conditions Laminar Boundary-Layer Mass Transfer for Finite Interfacial Velocities oblems ydrodynamic Stability Capillary Instability of a Liquid Thread 1 The Inviscid Limit 2 Viscous Effects on Capillary Instability 3 Final Remarks Rayleigh—Taylor Instability (The Stability of a Pair of Immiscible Fluids That Are Separated by a Horizontal Interface) 1 The Inviscid Fluid Limit	769 771 773 780 787 788 793 797 797 800 801 804 808 811
	B C D E F G No Pro	Governing Equations ($Re \gg 1$, $Pe \gg 1$, with Arbitrary Pr or Sc numbers) Exact (Similarity) Solutions for Pr (or Sc) $\sim O(1)$ The Asymptotic Limit, Pr (or Sc) $\gg 1$ The Asymptotic Limit, Pr (or Sc) $\ll 1$ Use of the Asymptotic Results at Intermediate Pe (or Sc) Approximate Results for Surface Temperature with Specified Heat Flux or Mixed Boundary Conditions Laminar Boundary-Layer Mass Transfer for Finite Interfacial Velocities otes oblems ydrodynamic Stability Capillary Instability of a Liquid Thread 1 The Inviscid Limit 2 Viscous Effects on Capillary Instability 3 Final Remarks Rayleigh—Taylor Instability (The Stability of a Pair of Immiscible Fluids That Are Separated by a Horizontal Interface) 1 The Inviscid Fluid Limit	769 771 773 780 787 788 793 797 797 800 801 804 808 811

С	Saffman-Taylor Instability at a Liquid Interface	823
	1 Darcy's Law	823
	2 The Taylor-Saffman Instability Criteria	826
D	Taylor-Couette Instability	829
	I A Sufficient Condition for Stability of an Inviscid Fluid	832
	2 Viscous Effects	835
Е	Nonisothermal and Compositionally Nonuniform Systems	840
F	Natural Convection in a Horizontal Fluid Layer Heated from	
	Below – The Rayleigh–Benard Problem	845
	I The Disturbance Equations and Boundary Conditions	845
	2 Stability for Two Free Surfaces	851
	3 The Principle of Exchange of Stabilities	853
	4 Stability for Two No-Slip, Rigid Boundaries	855
G	Double-Diffusive Convection	858
Н	Marangoni Instability	867
1	Instability of Two-Dimensional Unidirectional Shear Flows	872
	I Inviscid Fluids	873
	a The Rayleigh stability equation	873
	b The Inflection-point theorem	875
	2 Viscous Fluids	876
	a The Orr-Sommerfeld equation	876
	b A sufficient condition for stability	877
No	otes	878
Pro	oblems	880
Append	lix A: Governing Equations and Vector Operations in Cartesian,	
Cylindr	ical, and Spherical Coordinate Systems	891
Append	lix B: Cartesian Component Notation	897
Index		899