Inhalt

1	Einle	eitung
	1.1	Die Spritzgießfertigung als Verbund Mensch, Werkzeug und Maschine
		1.1.1 Produktionsmittel
		1.1.2 Ausbildung
		1.1.3 Wirtschaftlichkeit, Rentabilität
		1.1.4 Energieverbrauch
		1.1.5 Festlegung der Herstellkosten, Fehlerverursachung
		1.1.6 Ständige Überwachung der Fertigung
		1.1.7 Systematische Analyse, Optimierung
	1.2	Die Situation der Spritzgießverarbeiter in den Fertigungsbetrieben
		1.2.1 Hersteller von Eigenprodukten
		1.2.2 Lohnverarbeiter/Zulieferer der Automobilindustrie
		1.2.3 Systemlieferanten
	1.3	Die Erkenntnis daraus
	1.4	Ganzheitlicher Optimierung von Spritzgießprozessen – was ist darunter zu
		verstehen?
		1.4.1 Einzelne Phasen in der Prozesskette Spritzgießen
	1.5	Qualifikation der Mitarbeiter – Personalschulung
		1.5.1 Intensive Weiterbildung gegen akuten Fachkräftemangel 1
		1.5.2 Institute zur Weiterbildung im Bereich Spritzgießverarbeitung 1
		1.5.3 Seminare bei Rohstoff- und Spritzgießmaschinenherstellern 1
		1.5.4 Fachliteratur und Erfahrungskompendien 1
		1.5.5 Ratgeber auf PC-Basis
		1.5.6 Computerunterstützte Fehlerbehebung
2	Wah	l des Rohstoffs
	2.1	Die Wahl des Kunststoffwerkstoffs
	2.2	Materialvorauswahl – Einflussnahme durch folgende Bedingungen
	2.3	Werkstoffauswahl
	2.4	Mechanische Eigenschaften
	2.5	Oberflächeneigenschaften
	2.6	Chemikalienbeständigkeit ,Kraftstoffe, Öle
	2.7	Elektrische Eigenschaften
	2.8	Thermische Belastung und thermische Eigenschaften
	2.9	Verhalten gegenüber Umgebungseinflüssen
	2.10	Fazit zur Rohstoffauswahl
	2.11	Stetig wachsender Kunststoffverbrauch

3	Die 1	Bedeut	ung von Zuschlagstoffen für die anwendungstechnischen	23
	_	nschaft	en von Kunststoffen	23
	3.1	Zuschl	agstoffe für Polymere	23
	3.2		ngsmechanismen von Zuschlagstoffen in Thermoplasten	
	3.3		ngsmechanismen ausgewählter Zuschlagstoffe	24
		3.3.1	Antioxidantien	24
		3.3.2	Füll- und Verstärkungsstoffe	25
		3.3.3	Farbmittel	29
	3.4		izierung der Polymere	32
	3.5		lussung der Materialeigenschaften durch Blends	33
	3.6	Brand	schutzmittel	34
		3.6.1	Halogenhaltige Flammschutzmittel	36
		3.6.2	Phosphorhaltige Flammschutzmittel	36
		3.6.3	Stickstoffhaltige Flammschutzmittel	37
		3.6.4	Intumeszierende Flammschutzmittel	37
		3.6.5	Anorganische Flammschutzmittel	37
	3.7	Wechs	elwirkungen von Zuschlagsstoffen	38
	3.8	Die Er	ntwicklung und Fertigung von anwendungsspezifischen Compounds	39
	3.9		ndungen	40
		Lasers	ensitive Compounds	41
	3 11	Kochr	platte von IMS	42
	3.12	Polym	an® CA und Schulablend® CA	43
	0.12	2 01/11		
4	Der		gießprozess	45
	4.1	Auswa	ıhlkriterien für eine Spritzgießmaschine	45
	4.1	Auswa 4.1.1	ıhlkriterien für eine Spritzgießmaschine	45 45
	4.1		Allgemeine Anforderung an die Maschinengrundausrüstung	
	4.1	4.1.1 4.1.2	Allgemeine Anforderung an die Maschinengrundausrüstung Spezifische Anforderungen	45
		4.1.1 4.1.2 Verfah	Allgemeine Anforderung an die Maschinengrundausrüstung Spezifische Anforderungen	45
		4.1.1 4.1.2 Verfah	Allgemeine Anforderung an die Maschinengrundausrüstung Spezifische Anforderungen	45 46
		4.1.1 4.1.2 Verfal Param 4.2.1	Allgemeine Anforderung an die Maschinengrundausrüstung	45 46 46
		4.1.1 4.1.2 Verfah Param 4.2.1 4.2.2	Allgemeine Anforderung an die Maschinengrundausrüstung Spezifische Anforderungen nrenstechnische Voraussetzungen – die qualitätsbestimmenden neter Materialvorbereitung Formfüllung, Balancierung des Angusssystems	45 46 46 46
		4.1.1 4.1.2 Verfal Param 4.2.1 4.2.2 4.2.3	Allgemeine Anforderung an die Maschinengrundausrüstung Spezifische Anforderungen nrenstechnische Voraussetzungen – die qualitätsbestimmenden neter Materialvorbereitung Formfüllung, Balancierung des Angusssystems Einspritzgeschwindigkeit	45 46 46 46 46 48
		4.1.1 4.1.2 Verfah Param 4.2.1 4.2.2 4.2.3 4.2.4	Allgemeine Anforderung an die Maschinengrundausrüstung Spezifische Anforderungen nrenstechnische Voraussetzungen – die qualitätsbestimmenden neter Materialvorbereitung Formfüllung, Balancierung des Angusssystems Einspritzgeschwindigkeit Spritzdruck	45 46 46 46 48 48
		4.1.1 4.1.2 Verfalt Param 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5	Allgemeine Anforderung an die Maschinengrundausrüstung Spezifische Anforderungen nrenstechnische Voraussetzungen – die qualitätsbestimmenden neter Materialvorbereitung Formfüllung, Balancierung des Angusssystems Einspritzgeschwindigkeit Spritzdruck Umschaltung auf Nachdruck, Kompressionsphase	45 46 46 46 48 48 48
		4.1.1 4.1.2 Verfalt Param 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6	Allgemeine Anforderung an die Maschinengrundausrüstung Spezifische Anforderungen Brenstechnische Voraussetzungen – die qualitätsbestimmenden Beter Baterialvorbereitung Formfüllung, Balancierung des Angusssystems Einspritzgeschwindigkeit Spritzdruck Umschaltung auf Nachdruck, Kompressionsphase Die Nachdruck – und Restkühlphase	45 46 46 46 48 48 48 49
		4.1.1 4.1.2 Verfal Param 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7	Allgemeine Anforderung an die Maschinengrundausrüstung Spezifische Anforderungen nrenstechnische Voraussetzungen – die qualitätsbestimmenden neter Materialvorbereitung Formfüllung, Balancierung des Angusssystems Einspritzgeschwindigkeit Spritzdruck Umschaltung auf Nachdruck, Kompressionsphase Die Nachdruck – und Restkühlphase Faustregel zum Druckbedarf bzw. Druckverlust im System.	45 46 46 46 48 48 48 49 51
		4.1.1 4.1.2 Verfalt Param 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6	Allgemeine Anforderung an die Maschinengrundausrüstung Spezifische Anforderungen nrenstechnische Voraussetzungen – die qualitätsbestimmenden neter Materialvorbereitung Formfüllung, Balancierung des Angusssystems Einspritzgeschwindigkeit Spritzdruck Umschaltung auf Nachdruck, Kompressionsphase Die Nachdruck – und Restkühlphase Faustregel zum Druckbedarf bzw. Druckverlust im System. Werkzeugtemperierung/Anforderungen	45 46 46 46 48 48 48 49 51 51
	4.2	4.1.1 4.1.2 Verfah Param 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8	Allgemeine Anforderung an die Maschinengrundausrüstung Spezifische Anforderungen nrenstechnische Voraussetzungen – die qualitätsbestimmenden neter Materialvorbereitung Formfüllung, Balancierung des Angusssystems Einspritzgeschwindigkeit Spritzdruck Umschaltung auf Nachdruck, Kompressionsphase Die Nachdruck – und Restkühlphase Faustregel zum Druckbedarf bzw. Druckverlust im System. Werkzeugtemperierung/Anforderungen 4.2.8.1 Temperierkanallayout, prozessbestimmende Parameter	45 46 46 46 48 48 49 51 51 52
		4.1.1 4.1.2 Verfalt Param 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 Einflü	Allgemeine Anforderung an die Maschinengrundausrüstung Spezifische Anforderungen Irenstechnische Voraussetzungen – die qualitätsbestimmenden neter Materialvorbereitung Formfüllung, Balancierung des Angusssystems Einspritzgeschwindigkeit Spritzdruck Umschaltung auf Nachdruck, Kompressionsphase Die Nachdruck – und Restkühlphase Faustregel zum Druckbedarf bzw. Druckverlust im System Werkzeugtemperierung/Anforderungen 4.2.8.1 Temperierkanallayout, prozessbestimmende Parameter usse der Peripherie Trocknen und Fördern	45 46 46 46 48 48 49 51 51 52 53
	4.2	4.1.1 4.1.2 Verfalt Param 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 Einflü 4.3.1	Allgemeine Anforderung an die Maschinengrundausrüstung Spezifische Anforderungen Irenstechnische Voraussetzungen – die qualitätsbestimmenden neter Materialvorbereitung Formfüllung, Balancierung des Angusssystems Einspritzgeschwindigkeit Spritzdruck Umschaltung auf Nachdruck, Kompressionsphase Die Nachdruck – und Restkühlphase Faustregel zum Druckbedarf bzw. Druckverlust im System. Werkzeugtemperierung/Anforderungen 4.2.8.1 Temperierkanallayout, prozessbestimmende Parameter isse der Peripherie Trocknen und Fördern Trocknung.	45 46 46 46 48 48 49 51 51 52 53 53
	4.2	4.1.1 4.1.2 Verfalt Param 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 Einflü 4.3.1 4.3.2	Allgemeine Anforderung an die Maschinengrundausrüstung Spezifische Anforderungen Irenstechnische Voraussetzungen – die qualitätsbestimmenden neter Materialvorbereitung Formfüllung, Balancierung des Angusssystems Einspritzgeschwindigkeit Spritzdruck Umschaltung auf Nachdruck, Kompressionsphase Die Nachdruck – und Restkühlphase Faustregel zum Druckbedarf bzw. Druckverlust im System. Werkzeugtemperierung/Anforderungen 4.2.8.1 Temperierkanallayout, prozessbestimmende Parameter Irocknung. Verweilzeit	45 46 46 46 48 48 49 51 51 52 53 53 56
	4.2	4.1.1 4.1.2 Verfalt Param 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 Einflü 4.3.1	Allgemeine Anforderung an die Maschinengrundausrüstung Spezifische Anforderungen Irenstechnische Voraussetzungen – die qualitätsbestimmenden neter Materialvorbereitung Formfüllung, Balancierung des Angusssystems Einspritzgeschwindigkeit Spritzdruck Umschaltung auf Nachdruck, Kompressionsphase Die Nachdruck – und Restkühlphase Faustregel zum Druckbedarf bzw. Druckverlust im System. Werkzeugtemperierung/Anforderungen 4.2.8.1 Temperierkanallayout, prozessbestimmende Parameter usse der Peripherie Trocknen und Fördern Trocknung. Verweilzeit. Taupunktregelung.	45 46 46 46 48 48 49 51 51 52 53 53 56 58
	4.2	4.1.1 4.1.2 Verfalt Param 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 Einflü 4.3.1 4.3.2	Allgemeine Anforderung an die Maschinengrundausrüstung Spezifische Anforderungen Irenstechnische Voraussetzungen – die qualitätsbestimmenden neter Materialvorbereitung Formfüllung, Balancierung des Angusssystems Einspritzgeschwindigkeit Spritzdruck Umschaltung auf Nachdruck, Kompressionsphase Die Nachdruck – und Restkühlphase Faustregel zum Druckbedarf bzw. Druckverlust im System. Werkzeugtemperierung/Anforderungen 4.2.8.1 Temperierkanallayout, prozessbestimmende Parameter siese der Peripherie Trocknen und Fördern Trocknung Verweilzeit Taupunktregelung. 4.3.3.1 Temperaturabsenkung	45 46 46 46 48 48 49 51 51 52 53 53 56 58 59
	4.2	4.1.1 4.1.2 Verfalt Param 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 Einflü 4.3.1 4.3.2	Allgemeine Anforderung an die Maschinengrundausrüstung Spezifische Anforderungen Irenstechnische Voraussetzungen – die qualitätsbestimmenden neter Materialvorbereitung Formfüllung, Balancierung des Angusssystems Einspritzgeschwindigkeit Spritzdruck Umschaltung auf Nachdruck, Kompressionsphase Die Nachdruck – und Restkühlphase Faustregel zum Druckbedarf bzw. Druckverlust im System. Werkzeugtemperierung/Anforderungen 4.2.8.1 Temperierkanallayout, prozessbestimmende Parameter usse der Peripherie Trocknen und Fördern Trocknung Verweilzeit Taupunktregelung. 4.3.3.1 Temperaturabsenkung 4.3.3.2 Absperrung der Trichter vom Trockenluftstrom	45 46 46 46 48 48 49 51 51 52 53 53 56 58 59 59
	4.2	4.1.1 4.1.2 Verfalt Param 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 Einflü 4.3.1 4.3.2	Allgemeine Anforderung an die Maschinengrundausrüstung Spezifische Anforderungen Irenstechnische Voraussetzungen – die qualitätsbestimmenden neter Materialvorbereitung Formfüllung, Balancierung des Angusssystems Einspritzgeschwindigkeit Spritzdruck Umschaltung auf Nachdruck, Kompressionsphase Die Nachdruck – und Restkühlphase Faustregel zum Druckbedarf bzw. Druckverlust im System. Werkzeugtemperierung/Anforderungen 4.2.8.1 Temperierkanallayout, prozessbestimmende Parameter siese der Peripherie Trocknen und Fördern Trocknung Verweilzeit Taupunktregelung. 4.3.3.1 Temperaturabsenkung	45 46 46 46 48 48 49 51 51 52 53 53 56 58 59 59

		4.3.3.5	Absenkung des Füllstandes	60
		4.3.3.6	Doppelbauchtrichter	60
	4.3.4	Förderu	ng	61
		4.3.4.1	Beschickung der Trocknungstrichter	61
		4.3.4.2	Förderung von getrocknetem Material	61
		4.3.4.3	Auslegung von Förderanlagen	62
	4.3.5	Beispiele	e aus der Praxis	63
4.4	Werkz	eugabmu	sterung und Prozessoptimierung beim Spritzgießen	65
	4.4.1	Werkzeu	agabmusterung, Vorgehensweise und Parameter	65
	4.4.2	Qualität	sermittlung	70
	4.4.3	Messen	und Auswerten der Formteilmaße	70
	4.4.4	Vorgehe	nsweise Maschineneinstellung	73
	4.4.5	Schneck	enhub	73
	4.4.5	Berechn	en der Zuhaltekraft	74
	4.4.6		uckhöhe	75
	4.4.7	Nachdru	uckzeit	76
	4.4.8	Abkühlz	zeit	77
	4.4.9	Zylinder	rtemperatur	79
	4.4.10	Flanscht	temperatur	80
			agwandtemperatur	80
	4.4.12	Schneck	endrehzahl	80
	4.4.13	Schneck	enstaudruck	80
	4.4.14	Drehmo	oment an der Schnecke	81
	4.4.15	Einsprit	zvorgang	81
	4.4.16	Umscha	ltpunkt von Spritzdruck auf Nachdruck optimieren	82
	4.4.17	Wegabh	ängige Umschaltung	82
	4.4.18	Zeitabh	ängige Umschaltung	82
	4.4.19	Hydraul	likdruckabhängige Umschaltung	82
	4.4.20	Werkzeu	uginnendruckabhängige Umschaltung	83
	4.4.21	Vorgehe	ensweise zur Ermittlung des optimalen Umschaltpunktes	83
			llstudie	84
	4.4.23	Nachdri	uckhöhe optimieren	84
	4.4.24	Ermittlu	ing der erforderlichen Zuhaltekraft durch Spritzversuche	84
	4.4.25	Restmas	ssepolster	86
	4.4.26	Prozesso	optimierung	86
			nenfassung	89
			zgeschwindigkeit	91
			zdruck	91
			uckhöhe	91
	4.4.31	Nachdr	uckdauer	91
			zeit	91
	4.4.33	Schneck	kendrehzahl	91
			kenstaudruck	91
			veg	92
	4.4.36	Schneck	kendekompression	92
			ssepolster	92

		4.4.38	Umscha	ltpunkt auf Nachdruck	92
		4.4.39	Umscha	ltart	92
				emperatur	92
				ıgwandtemperatur	93
				raft	
				temperatur	
5	Das	Spritzg	ießwerk	zeug	95
-	5.1	Vollhe	ißkanal-S	Spritzgießformen für schnelllaufende Produkte	95
		5.1.1		ngshaltung	
		5.1.2	Vorausse	etzungen	95
		5.1.3		onsberechnungen	
		5.1.4	Anforde	rungen an die Werkzeugkonstruktion	96
		5.1.5		ausgelegte Formenkühlung	
		5.1.6		te Stahlauswahl	
		5.1.7		ng im Präzisionswerkzeugbau	
		5.1.8		Beispiele aus dem Präzisionswerkzeugbau	
			5.1.8.1	Produkt: Schutzkappen – 64-fach-Heißkanal-Spritzgieß-	
				werkzeug	104
			5.1.8.2	Produkt: 3-ml-Spritzenzylinder – 48-fach-Heißkanal-Spritz-	
				gießwerkzeug	104
			5.1.8.3	Produkt: 1000-µl-Pipettenspitzen – 16-fach-Heißkanal-	
				Spritzgießwerkzeug	105
			5.1.8.4	Produkt: Nadelschutz – 96-fach-Heißkanal-Spritzgieß-	
				werkzeug	105
			5.1.8.5	Produkt: 20-ml-Spritzenzylinder – 48-fach-Heißkanal-	
				Spritzgießwerkzeug	106
			5.1.8.6	Produkt: Kanülenträger – 64-fach-Heißkanal-Spritzgieß-	
				werkzeug	106
		5.1.9	Schlussv	wort	108
	5.2	Das pr	ozessopt	imierte Spritzgießwerkzeug im Großformenbau	108
		5.2.1	Spezielle	e Anforderungen an ein "Großwerkzeug"	109
		5.2.2	Temperi	ierung und Werkzeugstabilität	. 110
		5.2.3		wickelte Werkzeugkonzepte	
		5.2.4		nkappen-Konzept	
		5.2.5		eristik	
		5.2.6	Vorteile	gegenüber herkömmlichem Konzept mit Auswerferplatte	. 113
		5.2.7	Das Spr	eizschieber-Konzept	. 113
			5.2.7.1	Charakteristik	
		5.2.8	Das Sch	nellwechselsystem	
			5.2.8.1	Charakteristik	. 114
			5.2.8.2	Übernahmeelemente	
		5.2.9	Prozesso	optimierung	
			5.2.9.1	Zielführende Prozessoptimierung gemeinsam mit dem	
				Kunden	. 116
		5.2.10	Infrarot	aufnahmen zur Verifizierung thermischen Potenzials	

ΧI

			che Optimierung, Prozessablaufoptimierung	
	5.2.12	Artikelei	ntnahme	11/
	5.2.13	Zyklusze	eitreduzierung durch Berücksichtigung aller prozessrelevanten	120
			wirtschaftliche Aspekte	
	5.2.15	Reduktio	on der Projekt-Durchlaufzeit	121
	5.2.16	Zusamm	nenfassung	122
5.3		euge, Wei	rkzeugkonzepte	122
	5.3.1	Spritzgie	2ßwerkzeuge/Aufbau/Konzepte/Temperierung	122
	5.3.2	Bezeichr	nungen am Spritzgießwerkzeug	123
	5.3.2		igtechnik und Werkzeugbeschaffung	
	5.3.3		dene Arten von Kunststoffformenstählen [2]	
	5.3.4		chenbeschichtung von Spritzgießwerkzeugen	
	5.3.5	Belagbil	dung	130
	5.3.6	Angusss	ystem, Angussart, Angusslage	130
	5.3.7		alsysteme, beheizte Düsen	
	5.3.8		n von Heißkanälen und Werkzeugaufspannplatten	
	5.3.9	Entlüftu	ng	132
			ersystem im Werkzeug/Grundsätzliches	132
5.4			eigerung bei der PET-Vorformlingsherstellung durch den	125
			chkavitätenwerkzeugen	
	5.4.1		nalyse – Bestimmung des zu bedienenden Marktsegments	136
		5.4.1.1	Einschätzung des Marktwachstums für PET-Flaschen	136
		5.4.1.2	Marktlücken und Trends im PET-Verpackungsmarkt	127
			erkennen	
	5.4.2	•	der grundsätzlichen PET-Systemanforderungen	138
		5.4.2.1	Besonderheiten eines PET-Spritzgießsystems	139
		5.4.2.2	Qualitätsansprüche an den Vorformling	140
	5.4.3	-	rungspotentiale erkennen und bewerten	
		5.4.3.1	Ausstoßleistung als Erfolgskonzept	141
		5.4.3.2	Maßgeschneidertes Werkzeugkonzept für das gewählte	1.42
			Marktsegment	
		5.4.3.3	Lastenheft	
	5.4.4	-	erungsdurchführung	149
		5.4.4.1	Form (kalte Werkzeughälfte)	149
		5.4.4.2	Formteile	149
		5.4.3.3	Schieberrahmen und Kombikeile	
		5.4.4.4	Kühlung	151
		5.4.4.5	Heißkanal (heiße Werkzeughälfte)	
	5.4.5		penbau, Testphase und Evaluierung	162
		5.4.5.1	Kurzschuss (Short-Shot)	162
		5.4.5.2	Acetaldehyd-Gehalt	163
		5.4.5.3	Wasserverbrauch	164
	5.4.6	Ausblick	c – aktuelle Optimierungsansätze	165

6	Heiſ	Skanalsy	ysteme und Regelung	171
	6.1	Aufbau	und Konzepte	171
		6.1.1	Einige Auswahlkriterien für Heißkanalsysteme	
		6.1.2	Position der Heizung und Thermoelemente, Prozessfenster	
		6.1.3	Heißkanalregler	172
		6.1.4	HK-Düsen für Anwendungen im Hochleistungsbereich	173
		6.1.5	Die rheologische Werkzeugauslegung	175
	6.2	Heißka	analsysteme – Beispiele einiger Spezialanwendungen	175
		6.2.1	Beispiel "Fahrrad-Stoßdämpfer"	175
		6.2.2	Aufbau Nadelverschlusssystem	178
		6.2.3	Wärmeleitfähigkeit und thermische Isolierung	179
		6.2.4	Gekühlter Anschnitteinsatz	181
		6.2.5	Beispiel "B-Säulenverkleidung"	182
		6.2.6	Beispiel "Abdeckplatte"	186
		6.2.7	Schlussbemerkung	186
	6.3	Heißka	analtechnik	188
		6.3.1	Schmelzeführung	190
		6.3.2	Düsenarten	
			6.3.2.1 Gestaltung der Anbindung an das Formteil	192
			6.3.2.2 Auswahl des Düsentyps	192
			6.3.2.3 Auswahl der Düsenklasse	193
			6.3.2.4 Auswahl des Verteilers	193
			6.3.2.5 Wahl der Fließregulierungstechnik	193
		6.3.3	Verschiedene Anwendungsbeispiele	194
		6.3.4	Etagenwerkzeuge	195
		6.3.5	Heiße Seiten	196
		6.3.6	Kaskadensteuerung	196
		6.3.7	Dynamic Feed® – die individuelle Schmelzedruckregelung für jeden	
			Anschnitt	198
		6.3.8	Funktionsweise Dynamic Feed®	199
		6.3.9	Zielsetzungen von Dynamic Feed®	200
		6.3.10	Verbesserung der Bauteilqualität	200
			Verbesserung der Produktivität	
		6.3.12	Anwendungsgebiete für Dynamic Feed®	200
		6.3.13	Anwendungsbeispiele Dynamic Feed®	201
		6.3.14	Lösungsvorschlag und Vorgehensweise	. 202
		6.3.15	Beispiel: Familienwerkzeug am Beispiel einer Türverkleidung mit	
			Kartentasche	. 203
		6.3.16	Lösungsvorschlag und Vorgehensweise	. 205
		6.3.17	Reduzierung der maximalen Zuhaltekraft durch den Einsatz von	
			Dynamic Feed®	. 207
		6.3.18	Zusammenfassung und Gesamtbetrachtung	
	6.4		ngsfähige Heißkanalregelung zur Qualitätsgarantie	. 209
		6.4.1	Heißkanalregler analysiert den Werkzeugzustand	. 209
		6.4.2	PID ² -Regelung steuert den Heizstrom vorausschauend	
		643	Phasenanschnittsteuerung hietet unendliche" Leistungsvorgaben	

		6.4.4 6.4.5	Exakte Temperaturen sichern hohe Produktivität und Qualität PID ² -Regler ist prädestiniert für den Einsatz thermisch empfindlicher	211
		0.4.5	Rohstoffe	212
		6.4.6	Probleme erkennen, bevor Schäden entstehen	
			Zusammenfassung	
	6.5		haftliches Temperieren erfordert die Steigerung des Wirkungsgrades	
	0.5		kzeug und Heißkanalverteiler durch Einsatz von Wärmeschutz	216
		6.5.1	Aktuelle Erfahrungen	216
		6.5.2	Aufwand für den Wärmeschutz	
		6.5.3	Wärmeverluste	
		6.5.4	Wärmeleitung	
		6.5.5	Konvektion	
		6.5.6	Strahlung	220
		6.5.7	Trägheit	
		6.5.8	Thermischer Wirkungsgrad	221
		6.5.9	Weiterer Nutzen von Wärmeschutz	
			Zusammenfassung	
		0.5.10	Zusummemussung	
7	Einf	luss der	· Werkzeugtemperierung auf die Qualität und Stückkosten	
	von	Spritzg	ießteilen	227
	7.1	Die the	ermische Behandlung von Werkzeugen im Prozess	227
		7.1.1	Heißkanalsystem als möglicher Problemindikator	228
		7.1.2	Temperierung, Temperiermittelversorgung, Schlauchverbindungen	228
		7.1.3	Werkzeugtemperatur, Temperaturführung	
		7.1.4	Regelung der Werkzeugtemperatur über im Werkzeug integrierten	
			Thermofühler	231
			7.1.4.1 Abstand des Temperaturfühlers zur Formnestoberfläche	232
			7.1.4.2 Platzierung des Thermofühlers	234
		7.1.5	Werkzeugwandtemperatur, Abhängigkeit des Druckverlustes im	
			Temperierkanalsystem	234
			7.1.5.1 Übersicht von Schnellkupplungs-Verbindungen beim	
			Medium Wasser	237
			7.1.5.2 Schlauchleitungen, Verlegung, Isolation	237
		7.1.6	Feststoffablagerungen als "Wärmeübertragungsbremse"	238
			7.1.6.1 Vorbeugende Maßnahmen zur Wasserbehandlung:	24
			7.1.6.2 Dauerhaft geschützte Temperierkanäle	24
			7.1.6.3 Einfluss der Stahlqualität auf Korrosion und Belagbildung	
			in den Temperierkanälen	242
			7.1.6.4 Praxisbeispiel einer zuwachsenden Temperierung	
		7.1.7	Die thermische Auslegung der Temperierkanäle im Spritzgieß-	
		,,	werkzeug	245
		7.1.8	Das Spritzgießwerkzeug als Wärmetauscher	24
		7.1.0	7.1.8.1 Berechnung der Kühlzeit, Kühlzeitformel	240
		7.1.9	Ideales Temperierkanallayout	248
		7.1.7	Unterschiedliche Ausbildung der Temperierkanäle/mögliche	'
		7.1.10	Verfahren	24
			VCI 14111 CII	- ^·

		7.1.10.1	Bohrtechnik	248
		7.1.10.2	Konturführende Einsatztechnik	249
		7.1.10.3	Vakuum-Einschmelztechnik	250
		7.1.10.4	System Mecobond®	251
		7.1.10.5		251
		7.1.10.6	CO ₂ -Kühltechnik	253
	7.1.11		he Berechnungen, Voraussetzungen, Möglichkeiten	
			Berechnung mit Simulationsprogrammen	
			Berechnung mit dem Programm GWK-S-Therm	
		7.1.11.3	Berechnung nach dem Bilanzraumverfahren	256
	7.1.12	Zusamme	enfassung	257
	7.2.1		sches/Grundlegendes zur Thermografie – was macht die	
			rafie eigentlich?	258
	7.2.2		trum der Wellenlängen	
	7.2.3		hnik – gängige Kameratypen	
	7.2.4	Einsatz de	er Infrarotmesstechnik im Bereich Spritzguss-/Kunststoff-	
			.ing:	265
	7.2.5	Beispiele	weiterer Einsatzmöglichkeiten von Infrarotkamera-	
			emen	266
7.3	Die W	erkzeugter	nperierung, Mehrkreis-Temperierung, Anforderungen an die	
				270
	7.3.1		zeugtemperierung – ein komplexer Prozess	
	7.3.2		rgeräte	
	7.3.3	Die Heizi	ung	272
	7.3.4		ung	
	7.3.5		chinen	
	7.3.6		zip	
	7.3.7	Temperie	rgeräte richtig auswählen	275
	7.3.8	Berechnu	ngsgrundlagen	275
	7.5.0	7.3.8.1	Der Wärmeinhalt der Schmelze	275
			Die Kühlzeit	
			Der Wärmeübergangskoeffizient	
			Die Druckverluste	
		7.3.8.5	Die Wahl des Temperiermediums	284
			Auswahlkriterien	
			Der Wärmeinhalt	
			Schlussfolgerungen	
		7.3.8.9	Die Auslegung von Temperiergeräten	287
			Zielsetzung und Leistungskriterien	
			Zusammenfassung	
			Die Auswahl des richtigen Temperiergeräts	
		7.3.0.12	Einteilung nach Wärmeträgermedium	_∠07 ეცი
		7.3.0.14	Temperiergeräte für Wasser	207
			Temperiergeräte für Wärmeträgeröl	
			Einteilung nach Art der Kühlung	
		/.J.ö.1/	Einteilung nach Bauart	290

		7.3.8.18	Einteilung nach Verfahren	299
			Diskontinuierliche Temperierung	
			Dynamische Temperierung	
		7.3.8.21	Werkzeugvorwärmung	302
		7.3.8.22	Zusammenfassung	302
		7.3.8.23	Die Einbindung des Temperiergeräts in den Verarbeitungs-	
			prozess	303
		7.3.8.24	Die hydraulische Anbindung	303
		7.3.8.25	Schnittstellen zur Spritzgießmaschine	304
		7.3.8.26	Durchflussüberwachung	307
		7.3.7.27	Die Wasserqualität	308
		7.3.8.28	Organische Verunreinigungen	309
		7.3.8.29	Anorganische Ablagerungen	310
		7.3.8.30	Die wichtigsten Faktoren für eine optimale Wasserqualität	311
		7.3.8.31	Der Einfluss von Verunreinigungen auf die Prozesskosten	311
		7.3.8.32	Maßnahmen zur Erzielung der optimalen Wasserqualität	314
		7.3.8.33	Die Anlagentechnik zur Kühlwasserkonditionierung	315
		7.3.8.34	Enthärtungsanlage	316
		7.3.8.35	Nebenstrom-Filteranlage	316
		7.3.8.36	Zustands- und Qualitätsüberwachung	316
		7.3.8.37	Zusammenfassung	317
7.4	Quasi	-kontinui	erliche Temperierung, Impulskühlung	318
	7.4.1	Warum?	Was versteckt sich dahinter?	318
	7.4.2	Definition	on	320
		7.4.2.1	Wärmeströme im Werkzeug bei Vollautomatik-Betrieb	321
		7.4.2.2	Was geschieht bei Unterbrechungen/beim Anfahren?	322
		7.4.2.3	Wie geht man also bei der Impulskühlung mit dieser	
			Problematik um?	322
		7.4.2.4	Werkzeugtechnik bei Impulstemperierung	325
		7.4.2.5	Einflüsse des zu verarbeitenden Kunststoffs	325
		7.4.2.6	Maschinenfähigkeit	
		7.4.2.7	Probleme in der Praxis	328
		7.4.2.8	Anlagenbeschreibung	329
		7.4.2.9	PulseTemp® RPT 100	331
		7.4.2.10	Zusätzliche Betriebsart "Automatik"	. 332
		7.4.2.11	PulseTemp® RPT 200	. 332
		7.4.2.12	Praxisbeispiel Optimierung eines Saugrohrgehäuseteils	. 337
		7.4.2.13	Optimierungsschritt	. 338
		7.4.2.14	Optimierungsschritt (Bild 7.128a und 7.128b)	. 338
		7.4.2.15	Bei welchen Prozessen schlagen die besonderen Vorteile	
			dieser technischen Lösung gegenüber herkömmlicher	
			Temperierung durch?	. 339
		7.4.2.16	Hochleistungsspritzguss – Mehrkavitätenfertigung	. 339
		7.4.2.17	Ergebnis	. 340
7.5	Die ge	eregelte C	O2-Werkzeugkühlung, eine Optimierungsvariante	. 340
	7.5.1	Funktio	nsweise der CO2-Regelung	. 341

		7.5.2	Aufbau Regelkreis	343
		7.5.3	Funktionsprinzip der Temperaturregelung	345
		7.5.4	Synchroner Regelmodus	
		7.5.5	Asynchroner Regelmodus	346
		7.5.6	Verfahrenstechnische und metallurgische Überlegungen	349
		7.5.7	Projekt Batteriedeckel	350
		7.5.8	Kosten und Nutzen des "Rapid Cooling Systems"	
			7.5.8.1 Kosten	
			7.5.8.2 Nutzen	
			7.5.9 Beispielrechnung am Beispiel eines 2-K-Spritzgussteils	354
		7.5.10	Zusammenfassung	355
8	Einit	to Flore	ente-Simulation	357
О	8.1		Elemente-Berechnungen an thermoplastischen Kunststoffbauteilen	
	0.1	8.1.1	Grundlagen der FE-Berechnung	358
		8.1.2	Grundlagen	358
		8.1.3	Modellbildung/FE-Netze	359
		8.1.4	Randbedingungen	
		8.1.5	Lineare/Nicht lineare Berechnung	
		8.1.6	Grundlagen des Materialverhaltens von thermoplatischen	
			Kunststoffen	362
			8.1.6.1 Spannungs-Dehnungs-Diagramm	
		8.1.7	Viskoelastizität	363
		8.1.8	Kriechen/Relaxieren	365
		8.1.9	Abminderungsfaktoren	367
			8.1.9.1 Mechanische Auslegung von Kunststoffbauteilen	367
			8.1.9.2 Statik	367
			8.1.9.3 Strukturanalyse und linearelastische Analyse	367
			8.1.9.4 Zeitabhängige Berechnung (Kriechen/Relaxieren)	368
		8.1.10	Dynamik	368
			Modalanalyse (Eigenfrequenzermittlung)	
			Aufschwingen von Bauteilen	
			Crash	
			Temperatur	
			Kopplung der FEM mit der Füllsimulation	
			Berücksichtigung der Faserorientierung	
			Berechnung des Kernversatzes	
			Ergebnisinterpretation	
			Allgemein	
			Auslegungskriterien	
			Erforderliche Vorgaben	
			CAD-Daten	
			Schnittstellen	
	0.2		Randbedingungen	
	8.2		ation an Spritzgießbauteilen	
		x / I	warum simuau/m	3 / /

			8.2.1.1 Säule 1 – der Bauteilentwurf	374
			8.2.1.2 Säule 2 – der Werkzeugbau	
			8.2.1.3 Säule 3 – Die Fertigung	
		8.2.2	Berechnungsverfahren	
			8.2.2.1 FEM – Finite-Elemente-Methode	
			8.2.2.2 FDM – Finite-Differenzen-Methode	378
			8.2.2.3 Volumenkontrollmethode	379
			8.2.2.4 Boundary Methode	
		8.2.3	Spritzgießsimulation	380
			8.2.3.1 Berechnung der volumetrischen Formfüllung	
			8.2.3.2 Berechnung der Nachdruckphase	385
			8.2.3.3 Berechnung des Kühlsystems	387
		8.2.4	Sonderverfahren	388
			8.2.4.1 Hinterspritzen/In-mold Decoration	388
			8.2.4.2 Spritzprägen	391
			8.2.4.3 Sandwichspritzgießen	394
			8.2.4.4 Gasinjektionsverfahren	394
			8.2.4.4.1 Angaben zur Größe der Überlaufkavität	396
		8.2.5	Zusammenfassung	400
	8.3	Comp	uterunterstützte Fehlerbehebung in der Spritzgießtechnik	401
		8.3.1	Vorbeugende Maßnahmen	401
		8.3.2	Herausforderung durch ein Assessment-Tool	405
		8.3.3	Praktikum an virtuellen Verarbeitungsanlagen	406
		8.3.4	Computer Basiertes Training (CBT)	407
		8.3.5	Spritzgieß-Simulation	410
		8.3.6	Repräsentative Fallstudien	414
		8.3.7	Praxisnähe	417
		8.3.8	Erläuterndes und visualisierendes Programm	418
		8.3.9	Computer unterstützte Seminar-Nachbereitung	421
		8.3.10	Akzeptanz	424
			8.3.11 Hohe Attraktivität	427
		8.3.12	Kompetenz-Sicherung	428
		8.3.13	Kosten-Nutzen-Aspekte	429
		8.3.14	Einbindung von CBT	429
9	Opti	imierur	ngsvoraussetzungen	433
	9.1	Möglig	chkeiten ganzheitlicher Produktionsoptimierung und Qualitätssicherung	
		im Spi	ritzgießprozess aus der Erfahrung des Maschinenherstellers	433
		9.1.1	Produktionsoptimierung beginnt bereits beim Rüsten	433
		9.1.2	Die Spritzgießmaschine, zentrales Funktionselement der Produktion	
			qualitativ hochwertiger Kunststoffbauteile	436
		9.1.3	Aktive Oulitätsbeeinflussung der Spritzgießprozesses durch die	
			Regelungstechnik der Spritzgießmaschine	437
		9.1.4	Spritzseitige Regelungstechnik	437
		9.1.5	Die Spritzgießmaschine als Messmittel zur Erkennung von Prozess-	
		• •	abweichungen	440

		9.1.5.1 Auswerte- und Darstellmöglichkeiten von Maschinen-	
		Istwerten	440
		9.1.5.2 Aussagekraft von Maschinen- Istwerten und Prozess-	
		größen	440
		9.1.5.3 Überwachung der Qualitätsmerkmale	443
	9.1.6	Überwachung der Prozessparameter	445
9.2	Der W	erkzeuginnendruck zur Prozess- und Qualitätsüberwachung	446
	9.2.1	Werkzeuginnendruck	446
	9.2.2.	Prozessanalyse und Prozessoptimierung	446
	9.2.3.	Prozesssteuerung	
	9.2.4	Prozess- und Qualitätsüberwachung	452
	9.2.5	Werkzeuginnendrucksensoren	453
	9.2.6	Positionierung von Werkzeuginnendrucksensoren	454
	9.2.7	Sensoren zur Messung des Werkzeuginnendrucks	454
	9.2.8	Direkt messende Werkzeuginnendrucksensoren	454
	9.2.9	Indirekt messende Werkzeuginnendrucksensoren	
	9.2.10	Berührungslos messende Werkzeuginnendrucksensoren	460
9.3	Die W	rkzeugwandtemperatur als Basis zur Qualitätssicherung	461
	9.3.1	Am Anfang war der Werkzeuginnendruck	461
	9.3.2	Das Prinzip des Werkzeugwandtemperatur-Sensors	462
	9.3.3	Das Prinzip des Werkzeuginnendruck -Sensors	463
	9.3.4	Schnellkupplungen für den einfachen Austausch von Werkzeug-	
		einsätzen	465
	9.3.5	Messdatenerfassung und Prozessüberwachung	467
	9.3.6	Echtzeit-Steuerungen mit Hilfe der Werkzeugwandtemperatur	468
	9.3.7	Mehrkomponenten – Spritzgießen	470
	9.3.8	Schmelzefrontabhängige Steuerungen	471
	9.3.9	Die automatische Kaskadensteuerung	471
	9.3.10	Automatische Entlüftung der Kavität	472
	9.3.11	Automatisches Spritzprägen in Abhängigkeit der Schmelzefront	472
		Automatische Gasinnendruckverfahren	473
	9.3.13	Die Bedeutung von Reaktionszeiten – oder "Was ist eigentlich	
		Echtzeit?"	474
		Online-Prozess-Regelung mit Hilfe der Werkzeugwandtemperatur	
	9.3.15	Die Balancierung und Regelung von Heißkanalwerkzeugen	475
	9.3.16	Heißkanalwerkzeuge mit Mehrfachkavitäten	476
	9.3.17	Unterschiedliche Regelprinzipien	479
	9.3.18	Die Balancierung von Temperiersystemen	482
	9.3.19	Regelungen für Duroplast- und Elastomeranwendungen	484
	9.3.20	Fabrikweit vernetzte Systeme und Prozess-Informationssysteme	486
	9.3.21	Ausblick	487
9.4	Anwen	dung von statistischen Prozessmodellen zur Optimierung und	
		itssicherung	487
	9.4.1	Herausforderung an die Spritzgieß-Industrie	4 87
	9.4.2	Prozessoptimierung – Einflüsse und Ziele beim Spritzgießen	488

		9.4.3	Aufgaben des Spritzgießers=Anforderungen an die CQC	
			Systematik [1]	488
			9.4.3.1 Optimieren des Werkzeuges:	
			9.4.3.2 Finden des optimalen Arbeitspunktes:	
			9.4.3.3 Halten des optimalen Arbeitspunktes:	
			9.4.3.4 Dokumentation der Produktion:	
		9.4.4	Leistungen der CQC® Systematik.	
		9.4.5	Der CQC® Arbeitsablauf	
			9.4.5.1 Das Brainstorming	
			9.4.5.2 Der Bemusterungsplan	
			9.4.5.3 Statistische Versuchsplanung – Design of Experiments	
			(DoE)	492
			9.4.5.4 Versuchsdurchführung	
			9.4.5.5 Formteilmerkmale erfassen – Aufnahme der Prozesskurven-	
			verläufe	494
			9.4.5.6 Bemusterungsanalyse	
			9.4.5.7 Maschineneinstell-Optimierung	
			9.4.5.8 Werkzeugänderungen	495
			9.4.5.9 Berechnung von Prozesskennzahlen	495
		9.4.6	CQC Ausrüstungs-/Leistungsvarianten	
		,,,,,,	9.4.6.1 CQC® – Einrichten (Offline)	496
			9.4.6.2 CQC – Überwachen (Online)	
			9.4.6.3 CQC® – Regeln (Online)	
		9.4.7	Vorteile der Bemusterung mit Versuchsplan (CQC® Einrichten)	499
		9.4.8	Zusätzliche Vorteile CQC® Überwachen/Regeln:	499
		9.4.9	Zusammenfassung	499
		9.4.10	Erfahrungen der Firma Geberit Produktions- AG mit dem CQC® -	
		,,,,,,	System im produktiven Einsatz	500
			9.4.10.1 Vor- und Nachteile des CQC® Systems im Produktions-	
			alltag	501
			9.4.10.2 Fazit	502
10	Istar	ialvse ii	and Optimierung beim Spritzgießprozess	503
	10.1	Istanal	yse am Formteil und im Prozess	503
	10.1	10.1.1	Verfahrenstechnisches Potenzial	503
		10.1.1	Systematisches Vorgehen bei einer Istanalyse und Prozess-	
			ontimierung	505
	10.2	Rheolo	pgische und Thermische Analyse an Spritzgießwerkzeugen und	
	10.2	Prozes	sen	505
		10.2.1	Die rheologische Analyse	505
		10.2.2	Die thermische Analyse	506
		10.2.2	Symmetrische Wärmeabfuhr, Werkzeugwandtemperatur	506
	10.3	Die th	ermische Prozesskette	507
	10.3	Frmitt	lung und Berechnung von Zeiten und Kosten	508
		10.4.1	Maschinenablauf, Maschinenbewegungen, Peripherie	510
	10.5	Optim	ierungsbeispiele an Formteilen und Prozessen	510

	10.5.1	Feinwerktechnik, Elektronikindustrie	510		
	10.5.2	Messwerk – Bodenplatte für KFZ – Armaturen	510		
	10.5.3	Ausgangsbasis			
	10.5.4	Erkenntnis aus der Ergebnisanalyse			
	10.5.5	Optimierung der Werkzeugeinsätze	513		
	10.5.6	Optimierungsergebnis	513		
10.6	Elektro-	-Schaltgerätegehäuse	515		
	10.6.1	Gehäuse – Oberteil			
	10.6.2	Gehäuse – Unterteil	516		
	10.6.3	Ergebnisse der Istanalyse	516		
	10.6.4	Temperierung der Kerne nicht optimal			
	10.6.5	Mögliche Potenziale bei geändertem Werkzeugkonzept	518		
	10.6.6	Steckerleisten für den technischen Elektrobereich	518		
	10.6.7	Hohe Anforderungen an die Werkzeugtemperierung	518		
	10.6.8	Möglichkeiten zur Optimierung der Temperierung	521		
	10.6.9	Optimierungsergebnis	524		
10.7	Steckver	rbinder für die Kfz-Elektronik	524		
	10.7.1	Füllsimulation, thermische Berechnung, Verzugsberechnung	524		
	10.7.2	Verzug am Fertigteil			
10.8	Haushalt- und Weißgeräteindustrie				
	10.8.1	Traverse als Waschmaschinensockel	526		
	10.8.2	Ergebnisse der Istanalyse	526		
	10.8.3	Optimierungsvorschläge	529		
	10.8.4	Optimierungsergebnis			
10.9	Automo	obilindustrie			
	10.9.1	Türinnenverkleidung für AUDI A3/2-Türer. Optimierung eines			
		Großwerkzeuges im Partnerverbund	530		
	10.9.2	Istanalyse am Fertigteil	531		
	10.9.3	Optimierungskonzept	532		
	10.9.4	Optimierungsergebnis	534		
10.10	Bug Sto	ßfänger für PORSCHE 911	534		
	10.10.1	Erarbeitung und Umsetzung eines Werkzeugkonzeptes für höchste			
		Qualitätsansprüche	534		
		Spritzgießsimulation, Infrarotanalyse			
	10.10.3	Spritzgießsimulation, Thermische Werkzeugauslegung	537		
	10.10.4	Infrarotanalyse von Formteil und Werkzeug	537		