Contents | V | |--| | xiii | | xxi | | xxxi | | CP1-CP4 | | nd Reduction, | | rganisms 1–14
I David Knaff | | 2 2 3 r Compounds 4 8 11 | | Ifate 15-30 | | 15
16
16
17
18
22
23
24
25
26
26 | | | | 3 | Phylogenetic Analysis of Sulfate Assimilation and Cysteine | | |---|---|---------| | | Biosynthesis in Phototrophic Organisms | 31-58 | | | Stanislav Kopriva, Nicola J. Patron, Patrick Keeling, and Thomas L. | eustek | | | Summary | 32 | | | I. Introduction | 32 | | | | | | | II. Occurrence of Sulfate Assimilation in Different Taxa | 35 | | | III. Phylogenetic Analysis of Sulfate Assimilation Genes | 35 | | | IV. Protein Complexes and Fusions | 52 | | | V. Conclusions | 53 | | | Acknowledgements | 53 | | | References | 53 | | 4 | Metabolism of Cysteine in Plants and Phototrophic Bacteria | 59-91 | | | Rüdiger Hell, Markus Wirtz | | | | Summary | 59 | | | I. Introduction | 60 | | | Cysteine Synthesis in Prokaryotes | 60 | | | III. Cysteine Synthesis in Plants and Algae | 62 | | | IV. Structure of Proteins of Cysteine Synthesis in Bacteria and Plants | 66 | | | V. S-transfer Reactions and Degradation of Cysteine | 72 | | | VI. Regulation of Cysteine Flux in Plants | 77 | | | References | 84 | | 5 | Metabolism of Methionine in Plants and Phototrophic Bacteria Holger Hesse, Rainer Hoefgen | 93–110 | | | Summary | 93 | | | I. Introduction | 93 | | | II. Biosynthesis of Methionine Precursors via Alternate Pathways | 96 | | | III. Transsulfuration Process to Form Homocysteine | 97 | | | IV. Formation of Methionine by Transmethylation | 98 | | | V. Methionine Recycling | 99 | | | VI. Regulatory Aspects of Methionine Homeostasis | 101 | | | References | 106 | | 6 | Sulfotransferases from Plants, Algae and Phototrophic Bacteria | 111–130 | | | Cinta Hernández-Sebastià, Luc Varin, and Frédéric Marsolais | | | | Summary | 111 | | | I. Introduction | 112 | | | II. Nomenclature | 114 | | | III. Molecular Phylogeny of Plant Sulfotransferases | 114 | | | IV. Enzymatic Mechanism and Structural Requirements | 117 | | | V. Functional Characterization of Plant Sulfotransferases | 119 | | | VI. Sulfotransferases in Algae and Phototrophic Bacteria | 124 | | | VII. Future Prospects in Sulfotransferase Research | 127 | | | Acknowledgements | 128 | | | References | 128 | | | | | | • | in Plants and Phototrophic Bacteria Lolla Padmavathi, Hong Ye, Elizabeth AH Pilon-Smits, and Marinus Pilon | 131–147 | |----|---|--| | | Summary I. Introduction II. Iron-Sulfur Cluster Assembly III. Iron-Sulfur Cluster Dependent Cofactor Assembly Pathways IV. Synthesis of Thiamine V. Synthesis of Molybdenum Cofactor VI. Conclusions and Outlook Acknowledgements References | 131
132
132
140
141
141
143
143 | | Pë | art II: Sulfur in Plants and Algae | | | 8 | Molecular Biology and Functional Genomics for Identification of Regulatory Networks of Plant Sulfate Uptake and Assimilatory Metabolism Hideki Takahashi, Kazuki Saito | 149–159 | | | Summary I. Sulfate Transport Systems in Plants II. Regulation by Sulfur III. The <i>cis</i>-Acting Element of Sulfur Response IV. Regulation by Nitrogen and Carbon V. Plant Hormone Signals VI. Prospects of Transcriptome and Metabolome Analyses for Novel Gene Findings References | 149
150
151
152
152
153
154 | | 9 | Biosynthesis, Compartmentation and Cellular Functions
of Glutathione in Plant Cells
Andreas J. Meyer, Thomas Rausch | 161–184 | | | Summary I. Introduction II. Biosynthesis of Glutathione III. Compartmentation of Glutathione Metabolism in Plants IV. Cellular Functions of Glutathione in Plants Acknowledgements References | 161
162
162
166
170
178
178 | | 10 | Sulfolipid Biosynthesis and Function in Plants Christoph Benning, R. Michael Garavito, and Mie Shimojima | 185–200 | | | Summary I. Introduction II. Biosynthesis of Sulfoquinovosyldiacylglycerol III. Evolution of Sulfolipid Biosynthesis | 185
186
188
191 | | | V. Biological Function of Sulfolipid V. Biotechnological Applications and Production of Sulfolipids VI. Concluding Remarks Acknowledgements References | 192
194
195
195
195 | |----|---|---| | 11 | Sulfur-Containing Secondary Metabolites and Their
Role in Plant Defense
Meike Burow, Ute Wittstock, and Jonathan Gershenzon | 201–222 | | | Summary I. Introduction II. Sulfur and Activated Plant Defense III. Induced Defense by Sulfur and Sulfur-Containing Compounds IV. Constitutive Sulfur-Containing Defenses Acknowledgements References | 201
202
202
210
213
215
216 | | 12 | Sulfite Oxidation in Plants Robert Hänsch, Ralf R. Mendel | 223–230 | | | Summary I. Sulfur Cycling in Nature II. Sulfate Reduction in Plants III. The Ambivalent Nature of Sulfite: an Important but Toxic Intermediate IV. Sulfite Oxidase Activities in Plants V. Biochemical Properties of Plant Sulfite Oxidase (EC 1.8.3.1) VI. Plant Sulfite Oxidase is a Peroxisomal Enzyme VII. Compartmentalization of Sulfur Metabolism Acknowledgements References | 223
224
224
225
226
227
228
228
229 | | 13 | The State of Sulfur Metabolism in Algae: From Ecology to Genomics Nakako Shibagaki, Arthur Grossman | 231–267 | | | Summary I. Algae and the Global Sulfur Cycle II. Sulfur Metabolism III. Non-Protein Sulfur Compounds IV. Selenocysteine Metabolism V. Adaptation and Acclimation to S Deficiency VI. Regulatory Mechanisms Controlling Responses to S Deficiency VII. Interactions between Nutrient Pools VIII. Concluding Remarks Acknowledgements References | 232
232
233
242
248
248
253
255
256
256
257 | | | Acknowledgements | 2 | ## Part III: Sulfur in Phototrophic Prokaryotes | 14 | Systematics of Anoxygenic Phototrophic Bacteria Johannes F. Imhoff | 269–287 | |----|---|--| | | Summary I. Introduction II. Phototrophic Purple Sulfur Bacteria – Chromatiales III. Phototrophic Purple Nonsulfur Bacteria IV. Phototrophic Green Sulfur Bacteria – Chlorobiales References | 269
270
272
275
280
283 | | 15 | Inorganic Sulfur Compounds as Electron Donors in Purple Sulfur Bacteria Christiane Dahl | 289–317 | | | Summary I. Introduction II. Sulfur Oxidation Capabilities of Anoxygenic Phototrophic Bacteria III. Electron Transport in Purple Sulfur Bacteria IV. Biochemistry of Sulfur Oxidation Pathways in Purple Sulfur Bacteria Acknowledgements References | 289
290
291
295
296
311
311 | | 16 | Sulfide Oxidation from Cyanobacteria to Humans:
Sulfide-Quinone Oxidoreductase (SQR)
Yosepha Shahak, Günther Hauska | 319–335 | | | Summary I. Introduction II. Discovery and Development of Studies III. Characterization IV. Physiological Considerations V. Phylogenetic Aspects VI. Concluding Remark Acknowledgements References | 320
320
321
321
330
331
333
333 | | 17 | Genomic Insights into the Sulfur Metabolism of Phototrophic Green Sulfur Bacteria Niels-Ulrik Frigaard, Donald A. Bryant | 337–355 | | | Summary I. Introduction II. Sulfur Compounds Oxidized for Growth III. Sulfur Compound Oxidation Enzymes IV. Other Enzymes Related to Sulfur Compound Oxidation V. Non-Sulfurous Compounds Oxidized for Growth VI. Assimilatory Sulfur Metabolism | 338
338
340
340
349
351
352 | | | Acknowledgements References | 352
353
353 | |----|---|--| | 18 | Genetic and Proteomic Studies of Sulfur Oxidation in Chlorobium tepidum (syn. Chlorobaculum tepidum) Leong-Keat Chan, Rachael Morgan-Kiss, and Thomas E. Hanson | 357–373 | | | Summary I. Introduction II. Genetic Studies III. Proteomic Studies IV. Conclusions Acknowledgements References | 357
358
364
367
368
369
369 | | Pa | rt IV: Ecology and Biotechnology | | | 19 | Ecology of Phototrophic Sulfur Bacteria Jörg Overmann | 375–396 | | | Summary I. Introduction II. Habitats and Natural Populations of Phototrophic Sulfur Bacteria III. Biogeochemical Significance of Phototrophic Sulfur Bacteria IV. Phototrophic Sulfur Bacteria in the Past: Interpretation of Molecular Fossils Acknowledgements References | 375
376
376
386
388
391
391 | | 20 | Role of Sulfur for Algae: Acquisition, Metabolism,
Ecology and Evolution
Mario Giordano, Alessandra Norici, Simona Ratti, and John A. Rave | 397–415
en | | | Summary I. Introduction II. Sulfur Availability in Aquatic Ecosytems III. Sulfur Acquisition by Algae IV. Assimilation and Reduction of Sulfate by Algae V. Interactions Between S and C, N, P Metabolism VI. Algae are the Main Source of Biogenic Reduced Sulfur in the Environment VII. Sulfur Availability may have Played a Role in Algal Evolution, Succession and Distribution Acknowledgements References | 397
398
398
401
402
403
404
407
408
408 | | | . 1010-1010 | -100 | | 21 | Role of Sulfur for Plant Production in Agricultural and Natural Ecosystems Fang-jie Zhao, Michael Tausz, and Luit J. De Kok Summary I. Introduction II. Uptake, Assimilation and Distribution of Sulfur III. Significance of Sulfur in Plant Functioning and Adaptation to Stress and Pests IV. Plant Sulfur Requirement and Nutrition in Agro- | 417-435
417
418
418
421 | |-----|---|---| | | and Natural Ecosystems V. Sulfur and Food Quality Acknowledgements References | 424
426
428
428 | | 22 | Using Anoxygenic Photosynthetic Bacteria
for the Removal of Sulfide from Wastewater
Timothy J. Hurse, Ulrike Kappler, and Jürg Keller | 437–460 | | | Summary I. Introduction II. Suitable Bacterial Species III. Overview of Reactor Concepts IV. Reactor Performance V. Conceptual Model of the Substratum-Irradiated Biofilm VI. Implications for Process Scale-up and Future Research Directions References | 438
439
447
448
455
455 | | Pai | rt V: Specific Methods | | | 23 | X-ray Absorption Spectroscopy as Tool for the Detection and Identification of Sulfur Compounds in Phototrophic Organisms Alexander Prange, Josef Hormes, and Hartwig Modrow | 461–482 | | | Summary I. Introduction III. X-ray Absorption Spectroscopy – an Elementary Introduction III. X-ray Absorption-near edge structure (XANES) Spectroscopy Measurements of Sulfur Compounds IV. Application of XANES Spectroscopy to Investigate Sulfur in Phototrophic Organisms Acknowledgements References | 462
462
462
471
474
480
480 | | 24 | Imaging Thiol-Based Redox Processes in Live Cells Andreas J. Meyer, Mark D. Fricker | 483–501 | |------|--|---------| | | Summary | 483 | | | I. Introduction | 484 | | | II. General Strategies of Probe Design to Image | | | | Components of Redox Pathways | 485 | | | III. Quantitative Confocal Fluorescence Imaging | 488 | | | IV. Application of Thiol-Based Redox Imaging in Plants | 489 | | | V. Probes for Components that Interact with Thiols | 493 | | | VI. Conclusion and Future Perspectives | 497 | | | Acknowledgements | 497 | | | References | 498 | | Inde | ex | 503 |