Contents

Chapte	r 1. In	troduction	1
Chapte	r 2. G	eneral comments on references	5
Chapte	r 3. Ez	xamples of basic arithmetic groups	7
3.1.	\mathbb{Z} as a	discrete subgroup of \mathbb{R}	7
	3.1.1.	Poisson summation formula	8
	3.1.2.	Riemann zeta function	8
3.2.	\mathbb{Z}^n and	l lattices in \mathbb{R}^n	9
	3.2.1.	Lattices in \mathbb{R}^n	10
	3.2.2.	Sphere packing	11
	3.2.3.	Poisson summation formula for lattices in \mathbb{R}^n	12
	3.2.4.	Weil-Siegel formula	13
	3.2.5.	Voronoi formula	13
	3.2.6.	Generalizations of the Poisson summation formula	14
3.3.	The m	odular group $SL(2,\mathbb{Z})$	15
	3.3.1.	Fundamental domain of $SL(2,\mathbb{Z})$ in the upper	
		half plane	15
	3.3.2.	Reduced quadratic forms and reduction theory	16
	3.3.3.	Generators of $SL(2,\mathbb{Z})$	17
	3.3.4.	Volume formula for modular curves and locally	
		symmetric spaces	17
	3.3.5.	Moduli space of lattices	17
	3.3.6.	Compactifications	18
	3.3.7.	Deformation retraction to co-compact subspaces	19
	3.3.8.	Geodesic flow, continued fractions and symbolic	
		dynamics	19
	3.3.9.	Congruence subgroups	20
	3.3.10.	Dirichlet fundamental domain	21
	3.3.11.	Finite generation of discrete groups	22
	3.3.12.	Arithmetic Fuchsian groups	23
	3.3.13.	Characterization of arithmetic Fuchsian groups	23
3.4.	Spectra	al theory of $\Gamma \backslash \mathbb{H}$	24
	3.4.1.	· · · · · · · · · · · · · · · · · · ·	25
	3.4.2.	Spectral decomposition	25
		Discrete spectrum and Selberg's $\frac{1}{4}$ -conjecture	26
		Selberg trace formula	27

viii CONTENTS

	3.4.5.	Generalized Weyl law	28
	3.4.6.	Phillips-Sarnak conjecture on cusp Mass forms and	_
		spectral degeneration	28
	3.4.7.	Counting lengths of geodesics-the generalized prime	
		number theorem	29
	3.4.8.	Modular symbols	30
	3.4.9.	Selberg zeta function	31
	3.4.10.	Scattering geodesics and generalized Poisson relation	32
	3.4.11.	Modular forms and Maass forms	33
	3.4.12.	Automorphic representations	34
		L-functions	35
		Automorphic forms on adele groups	35
	3.4.15.	Converse theorems for L -functions	36
	3.4.16.	Applications of modular forms	36
Chapte	r 4. Ge	eneral arithmetic subgroups and locally	
•		mmetric spaces	37
4.1.		aic groups	37
4.2.		ion of arithmetic subgroups	38
4.3.		modular groups	39
4.4.		nence subgroups and the congruence kernel	40
4.5.	Arithm	netic subgroups as discrete subgroups of Lie groups	41
4.6.	Zariski	density of arithmetic subgroups	42
4.7.		etric spaces	43
4.8.		iemannian symmetric spaces	45
4.9.	Locally	symmetric spaces	45
4.10.	Space f		$\overline{46}$
4.11.	Compa	ctness criterion for locally symmetric spaces	47
4.12.	Siegel s	sets and fundamental sets	48
		ion theory for arithmetic subgroups	49
		reduction theory for arithmetic subgroups	50
4.15.	Metric	properties and Q-rank of locally symmetric spaces	51
4.16.	Volume	e spectrum of locally symmetric spaces	52
4.17.	Maxim	al arithmetic subgroups and automorphism groups	53
4.18.	Countin	ng of volumes of hyperbolic manifolds	54
4.19.	Countin	ng of subgroups by index	54
Chapter	r 5. Di	screte subgroups of Lie groups and arithmeticity of	
	lat	ctices in Lie groups	57
5.1.		lographic groups and Auslander conjecture	57
5.2.	Lattices	s in nilpotent Lie groups and Margulis Lemma	58
5.3.	Lattices	s in solvable Lie groups	60
5.4.		s in semisimple Lie groups	61
5.5.	Charac	terization of arithmetic groups	62
5.6.	Non-ari	ithmeticity of lattices in rank 1 cases	63

CONTENTS ix

5.7.	Arithmeticity of lattices in rank 1 cases	63	
5.8.	Linear discrete subgroups and Tits alternative		
5.9.	Reflection groups		
5.10.	10. Discrete groups related to Kac-Moody groups		
	and algebras	65	
5.11.	Infinite dimensional Lie groups and discrete groups		
	associated with them	66	
Chapter	: 6. Different completions of \mathbb{Q} and S-arithmetic groups over		
Chapter	number fields	69	
6.1.	p-adic completions	69	
6.2.	S-integers	69	
6.3.	S-arithmetic subgroups	70	
6.4.	S-arithmetic subgroups as discrete subgroups	•	
0.1.	of Lie groups	70	
Chapter	7. Global fields and S-arithmetic groups over function fields	73	
7.1.	Function fields	73	
7.2.	Global fields	73	
7.3.	S-arithmetic subgroups over function fields	7 4	
Chapter	8. Finiteness properties of arithmetic		
	and S-arithmetic groups	75	
8.1.	Finite generation	75	
8.2.	Bounded generation	76	
8.3.	Finite presentations	77	
8.4.	Finiteness properties such as FP_{∞}	77	
8.5.	Cofinite universal space for proper actions		
	and arithmetic groups	78	
8.6.	Finiteness properties of arithmetic subgroups	79	
Chapter	9. Symmetric spaces, Bruhat-Tits buildings		
Onapiei	and their arithmetic quotients	81	
9.1.	Flats in symmetric spaces and the spherical Tits building	81	
9.1.	Bruhat-Tits buildings	83	
9.3.	Action of S-arithmetic subgroups on products of symmetric		
J.J.	spaces and buildings	83	
9.4.	CAT(0)-spaces and $CAT(0)$ -groups	84	
9.5.	Reduction theory for S-arithmetic subgroups	85	
0.0.			
Chapter	10. Compactifications of locally symmetric spaces	87	
10.1.	Why locally symmetric spaces are often noncompact	87	
10.2.	Compactifications of symmetric spaces	87	
10.3.	Limit sets of Kleinian groups and Patterson-Sullivan		
	theory	89	
10.4.	Compactifications of locally symmetric spaces	93	
10 5	Compactifications of Bruhat-Tits buildings	99	

x CONTENTS

10.6.	Compactifications for S -arithmetic groups	93
10.7.	Geometry and topology of compactifications	94
10.8.	Truncation of locally symmetric spaces	94
Chapter		97
11.1.	As special Riemannian manifolds	98
11.2.	Local and infinitesimal rigidity of locally	
	symmetric spaces	98
11.3.	Global (strong) rigidity of locally symmetric spaces	99
11.4.	Super-rigidity of lattices	99
11.5.	Quasi-isometry rigidities of lattices	100
11.6.	Rank rigidity of locally symmetric spaces	102
11.7.	Entropy rigidity of locally symmetric spaces	
	and simplicial volume	102
11.8.	Rigidity of Hermitian locally symmetric spaces	103
11.9.	Rigidity of pseudo-Riemannian locally symmetric spaces	105
	Rigidity of non-linear actions of lattices: Zimmer program	106
	Rigidity in von Neumann algebras	109
	Topological rigidity and the Borel conjecture	111
	Methods to prove the rigidities	112
11.14.	Dynamics, flows on locally symmetric spaces	
	and number theory	113
Chapter	12. Automorphic forms and automorphic representations	
	for general arithmetic groups	115
12.1.	Automorphic forms	115
12.2.	Boundary values of eigenfunctions and	110
	automorphic forms	116
12.3.	Spectral decomposition	117
12.4.	Weyl law	118
12.5.	Counting of eigenvalues for a tower of spaces	118
12.6.	Quantum chaos	119
12.7.	Arthur-Selberg trace formula	120
12.8.	Selberg zeta function	121
12.9.	Counting of lengths of geodesics and volumes of tori	122
12.10.	L-functions of automorphic representations	122
	Meromorphic continuation of Eisenstein series	123
	Constant term of Eisenstein series	124
	Langlands program	124
	Spectral theory over function fields: an example	125
Chapter	13. Cohomology of arithmetic groups	127
~	Cohomology groups	127
13.2.	L^2 - and L^p -cohomology of arithmetic groups	128
13.3.	Intersection cohomology	129
13.4.	Weighted cohomology	129
	<u> </u>	~ *** **

CONTENTS xi

13.5.	Continuous cohomology	130
13.6.	Applications of automorphic forms to cohomology	130
13.7.	Construction of cycles and relations to automorphic forms	131
13.8.	Hecke trace formula on the cohomology groups	131
13.9.	Euler characteristics, Gauss-Bonnet formula	131
13.10.	Cohomology of S-arithmetic subgroups	133
13.11.	Boundary cohomology	133
Chapter	14. K-groups of rings of integers and K-groups of	
	group rings	135
14.1.	Definitions of algebraic K-groups	135
14.2.	Finite generation of $K^i(\mathbb{Z})$	135
14.3.	Relations between $K^i(\mathbb{Z})$ and cohomology of the	
	arithmetic groups $SL(n,\mathbb{Z})$	136
14.4.	Torsion elements of $K^i(\mathbb{Z})$	136
14.5.	Applications of $K_i(\mathbb{Z}[\Gamma])$ in topology	137
14.6.	Farrell-Jones conjecture, Borel conjecture and	
	Novikov conjecture	137
Chapter	15. Locally homogeneous manifolds and	
-	period domains	139
15.1.	Homogeneous manifolds as special Riemannian manifolds	139
15.2.	Non-symmetric, but homogeneous spaces	140
15.3.	Hodge structures, period domains and period maps	141
15.4.	Homogeneous, non-Riemannian manifolds	142
15.5.	Clifford–Klein forms of homogeneous spaces	143
15.6.	Space forms: non-Riemannian case	144
15.7.	Counting lattice points on homogeneous varieties	145
Chapter	16. Non-cofinite discrete groups, geometrically	
•	finite groups	147
16.1.	Geometrically finiteness conditions	147
16.2.	Applications in low dimensional topology	147
16.3.	Spectral theory of geometrically finite groups	149
Chapter	17. Large scale geometry of discrete groups	151
17.1.	Word metric on discrete groups and growth of groups	151
17.2.	Geometric group theory and property (T)	151
17.3.	Ends of groups	152
17.4.	Ends of locally symmetric spaces and bottom	
	of the spectrum	15^{4}
17.5.	Asymptotic invariants	157
17.6.	L^2 -invariants	158
17.7.	Boundaries of discrete groups	159
17.8	0 1 17	163

xii CONTENTS

17.9.	Isoperimetric profile, Dehn functions of	
	arithmetic subgroups	162
17.10.	Trees and applications in topology	163
Chapter	18. Tree lattices	165
18.1.	Structures of tree lattices	165
18.2.	Arithmeticity and density of commensurability groups of tree lattices	166
18.3.	Rigidity of lattices in products of trees	
	and CAT(0) groups	167
18.4.	Building lattices and applications to fake	
	projective planes	167
Chapter	19. Hyperbolic groups	169
19.1.	Basic properties of hyperbolic groups	169
19.2.	Rips complex and Gromov boundary	170
Chapter	20. Mapping class groups and outer automorphism	
-	groups of free groups	173
20.1.	Mapping class groups	173
20.2.	Teichmüller spaces of Riemann surfaces	174
20.3.		
	mapping class groups	175
20.4.		176
20.5.	Symmetry of Teichmüller spaces	178
Chapter	21. Outer automorphism group of free groups	
-	and the outer spaces	179
21.1.	Outer automorphism group of free groups	179
21.2.	· · · · · · · · · · · · · · · · · · ·	179
21.3.		180
21.4.	Outer automorphism group of non-free groups	181
Reference	ces	183
Index		245