Contents

	Prefa	xvii				
	Acknowledgments					
1	Intr	Introduction				
2	Logi	ical Pre	5			
	2.1	First-0	5			
		2.1.1 Syntax		5		
		2.1.2	Semantics	6		
		2.1.3	Soundness and Completeness	8		
		2.1.4	Many-Sorted First-Order Languages	8		
-		2.1.5	Reducing Many-Sorted Logic to Standard Logic	10		
		2.1.6	Some Useful First-Order Inference Rules	10		
		2.1.7	A Limitation of First-Order Logic	10		
	2.2	2.2 Second-Order Logic				
		2.2.1	Syntax	12		
		2.2.2	Semantics	12		
		2.2.3	Inductive Definitions and Second-Order Logic	13		
		2.2.4	The Incompleteness of Second-Order Logic	15		
	2.3	Exerci	ises	15		
	2.4	Biblio	graphic Remarks	18		
3	Intro	oduction	n to the Situation Calculus	19		
	3.1	The Si	ituation Calculus	19		
		3.1.1	Intuitive Ontology for the Situation Calculus	19		
		3.1.2	Axiomatizing Actions in the Situation Calculus	20		
		20				
		3.1.4	The Frame Problem	22		
	3.2	A Sim	ple Solution to the Frame Problem (Sometimes)	23		
		3.2.1	Frame Axioms: Pednault's Proposal	24		
		3.2.2	Frame Axioms: The Davis/Haas/Schubert Proposal	26		

viii Contents

		3.2.3	A Simple Solution (Sometimes)	28
		3.2.4	Aside: Normal Forms for Effect Axioms	29
		3.2.5	A Simple Solution: The General Case	30
		3.2.6	A Simple Solution: Functional Fluents	32
		3.2.7	A Simple Solution: Summary	34
		3.2.8	Some Limitations of These Action Descriptions	35
	3.3	Deduc	tive Planning with the Situation Calculus	35
	3.4	Forma	lizing Database Transactions in the Situation Calculus	39
		3.4.1	Motivation and Background	39
		3.4.2	Database Updates: A Proposal	39
		3.4.3	The Basic Approach: An Example	39
		3.4.4	Querying a Situation Calculus Database	41
	3.5	Exerci	ises	41
	3.6	Biblio	graphic Remarks	44
4	Four	ndations	s of the Situation Calculus	47
	4.1	The La	anguage of the Situation Calculus	47
	4.2	Axion	ns for the Situation Calculus	48
		4.2.1	Number Theory	48
		4.2.2	Foundational Axioms for Situations	49
		4.2.3	Some Consequences of the Foundational Axioms	52
		4.2.4	Executable Situations	52
		4.2.5	Further Consequences of the Foundational Axioms	53
	4.3	Reaso	ning about Situations Using Induction	54
		4.3.1	Some Examples of Inductive Proofs	55
		4.3.2	State Constraints	57
	4.4	Basic	Theories of Action	58
	4.5	Regre	ssion	61

Contents ix

	4.6	Using	Regression	67
		4.6.1	Executable Ground Action Sequences	67
		4.6.2	The Projection Problem and Query Evaluation	69
	4.7	Regres	ssion with Functional Fluents	70
	4.8	Databa	ase Logs and Historical Queries	73
		4.8.1	Querying All Past Situations	74
		4.8.2	Querying Some Past Situation	76
		4.8.3	The Projection Problem Revisited	77
	4.9	Exerci	ises	78
	4.10	Biblio	graphic Remarks	83
5	Impl	ementi	ng Basic Action Theories	85
	5.1	Logica	al Foundations of Prolog	85
		5.1.1	Why Insist on a Proper Prolog Interpreter?	87
		5.1.2	More on the Equational Theory of Clark's Theorem	88
	5.2	Lloyd	-Topor Normal Forms for Arbitrary Definitions and Goals	90
		5.2.1	What Are the Lloyd-Topor Auxiliary Predicates?	91
		5.2.2	Accommodating Arbitrary Goals	92
		5.2.3	Definitional Theories: Soundness, Completeness, and Closed Worlds	94
	5.3	Basic	Action Theories, Definitions, and Regressable Queries	95
		5.3.1	Definitional Form for Action Precondition Axioms	96
		5.3.2	Definitional Form for Successor State Axioms	96
		5.3.3	Unfolding the Lloyd-Topor Auxiliary Predicates	102
		5.3.4	Revised Lloyd-Topor Transformations	102
	5.4	Exerc	ises	107
	5.5	Biblio	ographic Remarks	108
6	Com	plex A	ctions, Procedures, and Golog	111
	6.1	Comp	lex Actions and Procedures in the Situation Calculus	111

x Contents

		6.1.1	Procedures	114
		6.1.2	Programs and Executable Situations	116
		6.1.3	Why Macros?	117
		6.1.4	Programs as Macros: What Price Must Be Paid?	118
		6.1.5	Golog	119
	6.2	An Ele	evator Controller in Golog	119
	6.3	Impler	mentation	122
		6.3.1	An Interpreter	122
		6.3.2	Assumptions Underlying the Implementation	125
		6.3.3	Correctness of the Interpreter for Basic Action Theories with Closed Initial Database	126
		6.3.4	The Elevator Example	129
		6.3.5	The University of Toronto Implementation of Golog	132
	6.4	Discus	ssion	132
	6.5	Provin	g Properties of Golog Programs	134
		6.5.1	Induction Principle for While Loops	135
		6.5.2	Example: A Blocks World	136
	6.6	Summ	nary	138
	6.7	Exerc	ises	140
	6.8	Biblio	graphic Remarks	145
7	Tim	e, Conc	urrency, and Processes	149
	7.1	Concu	arrency and Instantaneous Actions	149
	7.2	Concu	rrency via Interleaving	150
		7.2.1	Examples of Interleaved Concurrency	151
		7.2.2	Limitations of Interleaved Concurrency	152
	7.3	The S	equential, Temporal Situation Calculus	152
		7.3.1	Concurrent Temporal Processes	154
	7.4	Seque	ential, Temporal Golog	155

Contents xi

		7.4.1	Example: A Coffee Delivery Robot	156
		7.4.2	A Singing Robot	162
		7.4.3	Plan-Execution Monitoring	163
	7.5	The Co	oncurrent, Non-Temporal Situation Calculus	164
	7.6	Axiom	atizing Concurrent Worlds	166
		7.6.1	Successor State Axioms	166
		7.6.2	Action Precondition Axioms	166
	7.7	The Co	oncurrent, Temporal Situation Calculus	167
	7.8	Concur	rrent, Temporal Golog	169
	7.9	Natura	1 Actions	170
		7.9.1	Representing Physical Laws	170
		7.9.2	Permissiveness of the Situation Calculus	171
		7.9.3	Natural Actions and Executable Situations	172
		7.9.4	An Example: Enabling Actions	173
		7.9.5	Zeno's Paradox	173
		7.9.6	The Natural-World Assumption	174
		7.9.7	Least-Natural-Time Points	174
		7.9.8	Simulating Natural Worlds	176
		7.9.9	Animating Natural Worlds	180
	7.10	Exerci	ses	182
	7.11	Bibliog	graphic Remarks	183
8	Exog	enous A	Actions, Interrupts, and Reactive Golog	185
	8.1	Interru	apts	185
	8.2	The Se	emantics of RGolog	187
		8.2.1	Intuitive Semantics of RGolog	187
		8.2.2	Formal Semantics of RGolog	188
	8.3	An RC	Golog Interpreter	190

xii Contents

	8.4	Examp	ole: A Reactive Elevator Controller	191
		8.4.1	A Reactive Elevator with Interactively Generated Exogenous Actions	193
		8.4.2	A Reactive Elevator with Randomly Generated Exogenous Actions	197
	8.5	Interru	upts with Priorities	198
	8.6	Discus	ssion	199
		8.6.1	Sensing and Exogenous Actions	200
		8.6.2	On-Line vs. Off-Line Program Execution	200
	8.7	Exerci	ises	202
	8.8	Biblio	graphic Remarks	203
9	Prog	ression	ı	205
	9.1	Logica	al Foundations of Progression	207
		9.1.1	Finite Progression Is Second-Order Definable	209
		9.1.2	Progression Is Not Always First-Order Definable	210
		9.1.3	But Why Not Do the Obvious?	210
	9.2	Two F	First-Order Progressable Cases	210
		9.2.1	Progressing Relatively Complete Databases	210
		9.2.2	Context-Free Successor State Axioms and the Progression of Isolated Fluents	213
	9.3	STRII	PS Planning Systems	216
		9.3.1	STRIPS Databases	216
		9.3.2	STRIPS Operator Descriptions	218
		9.3.3	Planning with STRIPS	221
	9.4	Strong	gly Context-Free Successor State Axioms	223
	9.5	Progre	ession and Relational STRIPS	224
	9.6	An O	pen-World STRIPS	226
	9.7	Corre	ctness of Relational and Open-World STRIPS	228

Contents xiii

	9.8	Exercises	230
	9.9	Bibliographic Remarks	231
10	Planı	ning	233
	10.1	A Simple Breadth-First Planner	233
	10.2	Example: Planning in the Blocks World	235
		10.2.1 A Planning Problem Example	239
	10.3	Planning with Concurrent Actions	242
	10.4	OCTOPUS: A Multi-Handed Blocks World Agent	247
	10.5	A Simple Depth-First Planner	255
	10.6	Open-World Planning	259
		10.6.1 Prime Implicates and Compiling an Initial Database	259
		10.6.2 A Regression-Based Theorem-Prover	266
		10.6.3 Bad Situations for Open-World Planning	268
		10.6.4 Axiomatizing Incomplete Initial Situations	268
		10.6.5 A Blocks World with Incomplete Initial Situation	270
	10.7	Planning vs. Nondeterministic Programming	275
	10.8	Exercises	277
	10.9	Bibliographic Remarks	280
11	Sensi	ing and Knowledge	283
	11.1	Knowledge in the Situation Calculus	283
		11.1.1 Accessibility Relations and Knowledge	284
		11.1.2 Alternatives to the Initial Situation	286
		11.1.3 Knowing a Referent	287
		11.1.4 Knowledge and Action	287
		11.1.5 Knowledge Defined	288
		11.1.6 Some Consequences of This Approach	289
		11.1.7 A Useful Notation	290

xiv Contents

	11.1.8	Quantifiers and Knowledge	291	
11.2	Knowle	edge and the Designer's Perspective	292	
	11.2.1	Logical Omniscience Revisited	293	
11.3	Knowle	edge-Producing Actions	293	
11.4	The Fra	ame Problem for Knowledge-Producing Actions	294	
	11.4.1	The No-Side-Effects Assumption for Knowledge- Producing Actions	294	
	11.4.2	A Successor State Axiom for K	295	
	11.4.3	More General Knowledge-Producing Actions	299	
	11.4.4	Some Consequences of this Solution	299	
11.5	Access	ibility in the Initial Situation	302	
	11.5.1	New Foundational Axioms for Situations	302	
	11.5.2	Some Possible Accessibility Relations	304	
	11.5.3	Basic Action Theories for Knowledge	305	
11.6	Regress	sion for Knowledge-Producing Actions	306	
11.7	Knowle	edge-Based Programming	309	
	11.7.1	Two Simplifying Assumptions	312	
	11.7.2	Sense Actions	312	
	11.7.3	Reducing Knowledge to Provability for the Initial Situation	313	
	11.7.4	On-Line Execution of Knowledge-Based Programs	314	
	11.7.5	Reduction of Knowledge to Provability for On-Line Programs	315	
	11.7.6	The Dynamic Closed-World Assumption	318	
	11.7.7	Interpreter for Knowledge-Based Programs with Sensing	321	
	11.7.8	Computing Closed-World Knowledge	322	
	11.7.9	Putting It All Together	322	
11.8	Discus	sion	327	
11.9	Exercises · 33			

Contents xv

11.10) Biblic	ographic Remarks	332	
12 Probability and Decision Theory				
12.1	12.1 Stochastic Actions and Probability			
	12.1.1	How to Specify a Probabilistic Domain: A Guide for the Perplexed	339	
	12.1.2	Some Properties of the Specification	341	
12.2	Derive	d Probabilities	341	
	12.2.1	stGolog: Stochastic Golog	345	
12.3	Exoger	nous Events	349	
12.4	Uncert	ainty in the Initial Situation	359	
12.5	Marko	v Decision Processes	363	
	12.5.1	Sensing and stGolog Programs	366	
	12.5.2	Fully Observable MDPs	369	
	12.5.3	Partially Observable MDPs	372	
	12.5.4	Implementing Policies: Run-Time Sense Actions	376	
	12.5.5	Exogenous Actions	378	
	12.5.6	Solving MDP Planning Problems	378	
12.6	Discus	sion	379	
12.7	Exercis	ses	380	
12.8	Bibliog	graphic Remarks	383	
13 Conc	luding	Remarks	385	
Appendi Sor		ful First-Order Inference Rules	389	
A.1	Decom	position Rules	389	
A.2	Genera	ation Rules	391	
A.3	Succes	s Rules	392	
A.4	Proof I	Rules for Unique Names Axioms	392	
A.5	Simpli	fication Rules	393	

xvi Contents

A.6	Additional Success Rules	394
A.7	Examples of Proofs	394
A.8	Exercises	399
Appendi Th	ix B: ne Qualification and Ramification Problems	401
B.1	Constraints and the Ramification Problem	401
B.2	Constraints and the Qualification Problem	402
B.3	Solving the Qualification and Ramification Problems	404
Appendi Re	ix C: esources	407
Refe	rences	409
Index	X	419