CONTENTS

Part 1.	THE INDUSTRIAL PERSPECTIVE	1
	Design-Centered Innovation* Roland W. Schmitt	2
Part 2.	COGNITIVE AND SOCIAL ASPECTS OF THE DESIGN PROCESS	9
	Descriptive Models of Cognitive Aspects of the Engineering Design Process* Gary Perlman	10
	Meta–Design: Reflections on a Graduate Course in Design Theory and Methodology Alice M. Agogino, Jonathan Cagan & Michael J. Molezzi.	18
	Design Theory and Methods — — An Interdisciplinary Approach Donald A. Schon & Louis L. Bucciarelli	29
	Use of Systemic Theory to Represent the Conceptual Mechanical Design Process Manjula B. Waldron, Kenneth J. Waldron & Dean H. Owen	36
	Tools for Expert Designers: Supporting Conceptual Design Sandra L. Newsome & William R. Spillers	49
	Modeling Software Design Within a Problem–Space Architecture Beth Adelson	56
Part 3.	COMPUTATIONAL MODELS OF DESIGN PROCESSES	81
	Computational Models of Design Processes* Gale E. Nevill, Jr.	82
	A Fuzzy Set Algorithm for Engineering Design Applications to the Component Parts Industry Sheldon S.L. Chang	117
	Form – Function Characteristics of Electro – Mechanical Designs James R. Rinderle, Eric R. Colburn, Stephen P. Hoover, Juan Pedro Paz – Soldan and John D. Watton	132

Strategic Conceptual Design in Mechanism Synthesis Kevin Otto, Donald R. Riley, Arthur G. Erdman & Albert Esterline	148
Optimally – Directed Innovative Design (Abstract) Alice M. Agogine & Jonathan Cagan.	154
Chunking Structural Design Knowledge as Prototypes (Abstract) John Gero, Mary Lou Maher & Weiguang Zhang	155
Engineering Design Synthesis: A Domain Independent Representation (Abstract) Mary Lou Maher	156
Part 4. ENVIRONMENTS, LANGUAGES, REPRESENTATIONS, AND DATA BASES FOR DESIGN	157
Automatic Composition in Design [*] Charles M. Eastman	158
Formal Devices for Design* George Stiny	173
Form + Function + Algebra = Feature Grammars Steven N. Longenecker & Patrick A. Fitzhorn	189
Design Theory: A Model for Conceptual Design W.R. Spillers & Sandra Newsome	198
Development of Design Methodologies Jo Dale Carothers & Harvey G. Cragon	216
Object-Oriented Data Structures for Designing by Features: Integrating Functinality and Geometry (Abstract) Alice M. Agogino & Ramanathan Guha	224
Part 5. ANALYSIS TO SUPPORT DESIGN	225
Design for the Operability and Controllability of Chemical Processes Warren D. Seider	226
Stochastic Modelling of Physical Processes and Optimization of the Domain Vadim Komkov	239
Retrofitting Heat Exchanger Networks: A Two Stage Approach Amy R. Ciric & Christodoulos A. Floudas	265
A Fussy Set Based Environment for Design Optimization Alejandro R. Diaz	286
CKAAD – Expert. A Computer and Knowledge Aided Architectural Design Expert (Abstract) Chris I. Yessios & Richard E. Parent	296
Computational Tools for Preliminary Engineering Design (Abstract) Kristin L. Wood & Erik K. Antonsson	297

x

	Stochastic Form Optimization (Abstract) Tomasz Arciszewski	298
	Globally Optimal Design Using Simulated Annealing (Abstract) Alice M. Agogino & Pramod Jain	299
	Constraint Management in Conceptual Design (Abstract) David Gossard & David Serrano	300
Part 6.	DESIGN FOR MANUFACTURING AND THE LIFE CYCLE	301
	Design for Manufacturing and the Life Cycle* Howard M. Bloom	302
	Decision - Analytic Methodology for Life Cycle Design	313
	(Abstract) Alice M. Agogino, Wayne Imaino & Sherman S. Wang	
Part 7.	RESEARCH IN DESIGN	315
	On Research Methodology Towards a Scientific Theory of Engineering Design John R. Dixon	316
	Design Theory and Methodology (Description of the NSF program)	338
		339
APPENI	JIX. THE WORKSHOP	340
	Workshop Program	010
	Reports from the Working Groups John R. Dizon	342
	List of Participants	350