Contents

List of Tables List of Figures Acknowledgements		xiii
		xv
		xix
Pre	face	xxi
We	b site	xxix
PAR	RT 1: INTRODUCTION	
1	HOW A META-ANALYSIS WORKS	3
	Introduction	3
	Individual studies	3
	The summary effect	5
	Heterogeneity of effect sizes	6
	Summary points	7
2	WHY PERFORM A META-ANALYSIS	9
	Introduction	9
	The streptokinase meta-analysis	10
	Statistical significance	11
	Clinical importance of the effect	12
	Consistency of effects	12
	Summary points	14
PAF	RT 2: EFFECT SIZE AND PRECISION	
3	OVERVIEW	17
	Treatment effects and effect sizes	17
	Parameters and estimates	18
	Outline of effect size computations	19
4	EFFECT SIZES BASED ON MEANS	21
	Introduction	21
	Raw (unstandardized) mean difference D	21
	Standardized mean difference, d and g	25
	Response ratios	30
	Summary points	32

vi Contents

5	EFFECT SIZES BASED ON BINARY DATA (2 $ imes$ 2 TABLES)	33
	Introduction	33
	Risk ratio	34
	Odds ratio	36
	Risk difference	37
	Choosing an effect size index	38
	Summary points	39
6	EFFECT SIZES BASED ON CORRELATIONS	41
	Introduction	41
	Computing r	41
	Other approaches	43
	Summary points	43
7	CONVERTING AMONG EFFECT SIZES	45
	Introduction	45
	Converting from the log odds ratio to d	47
	Converting from d to the log odds ratio	47
	Converting from r to d	48
	Converting from d to r	48
	Summary points	49
8	FACTORS THAT AFFECT PRECISION	51
	Introduction	51
	Factors that affect precision	52
	Sample size	52
	Study design	53
	Summary points	55
9	CONCLUDING REMARKS	57
PAF	RT 3: FIXED-EFFECT VERSUS RANDOM-EFFECTS MODELS	
10	OVERVIEW	61
	Introduction	61
	Nomenclature	62
11	FIXED-EFFECT MODEL	63
	Introduction	63
	The true effect size	63
	Impact of sampling error	63

	Contents	vii
	Performing a fixed-effect meta-analysis	65
	Summary points	67
12	RANDOM-EFFECTS MODEL	69
	Introduction	69
	The true effect sizes	69
	Impact of sampling error	70
	Performing a random-effects meta-analysis	72
	Summary points	74
13	FIXED-EFFECT VERSUS RANDOM-EFFECTS MODELS	77
	Introduction	77
	Definition of a summary effect	77
	Estimating the summary effect	78
	Extreme effect size in a large study or a small study	79
	Confidence interval	80
	The null hypothesis	83
	Which model should we use?	83
	Model should not be based on the test for heterogeneity	84
	Concluding remarks	85
	Summary points	85
14	WORKED EXAMPLES (PART 1)	87
	Introduction	87
	Worked example for continuous data (Part 1)	87
	Worked example for binary data (Part 1)	92
	Worked example for correlational data (Part 1)	97

	Worked example for correlational data (Part 1)	97
	Summary points	102
PAR	RT 4: HETEROGENEITY	
15	OVERVIEW	105
	Introduction	105
	Nomenclature	106
	Worked examples	106
16	IDENTIFYING AND QUANTIFYING HETEROGENEITY	107
	Introduction	107
	Isolating the variation in true effects	107
	Computing Q	109
	Estimating τ^2	114
	The I^2 statistic	117

viii Contents

	Comparing the measures of heterogeneity Confidence intervals for τ^2	119 122
	Confidence intervals (or uncertainty intervals) for I^2	124
	·	124
	Summary points	123
17	PREDICTION INTERVALS	127
	Introduction	127
	Prediction intervals in primary studies	127
	Prediction intervals in meta-analysis	129
	Confidence intervals and prediction intervals	131
	Comparing the confidence interval with the prediction interval	132
	Summary points	133
18	WORKED EXAMPLES (PART 2)	135
	Introduction	135
	Worked example for continuous data (Part 2)	135
	Worked example for binary data (Part 2)	139
	Worked example for correlational data (Part 2)	143
	Summary points	147
19	SUBGROUP ANALYSES	149
	Introduction	149
	Fixed-effect model within subgroups	151
	Computational models	161
	Random effects with separate estimates of τ^2	164
	Random effects with pooled estimate of τ^2	171
	The proportion of variance explained	179
	Mixed-effects model	183
	Obtaining an overall effect in the presence of subgroups	184
	Summary points	186
20	META-REGRESSION	187
	Introduction	187
	Fixed-effect model	188
	Fixed or random effects for unexplained heterogeneity	193
	Random-effects model	196
	Summary points	203
21	NOTES ON SUBGROUP ANALYSES AND META-REGRESSION	205
	Introduction	205
	Computational model	205
	Multiple comparisons	208
	Software	209
	Analyses of subgroups and regression analyses are observational	209

ix

	Concerts	IA.
	Section of the second Section 1	
	Statistical power for subgroup analyses and meta-regression Summary points	210 211
PAF	RT 5: COMPLEX DATA STRUCTURES	
22	OVERVIEW	215
23	INDEPENDENT SUBGROUPS WITHIN A STUDY	217
	Introduction	217
	Combining across subgroups	218
	Comparing subgroups	222
	Summary points	223
24	MULTIPLE OUTCOMES OR TIME-POINTS WITHIN A STUDY	225
	Introduction	225
	Combining across outcomes or time-points	226
	Comparing outcomes or time-points within a study	233
	Summary points	238
25	MULTIPLE COMPARISONS WITHIN A STUDY	239
	Introduction	239
	Combining across multiple comparisons within a study	239
	Differences between treatments	240
	Summary points	241
26	NOTES ON COMPLEX DATA STRUCTURES	243
	Introduction	243
	Summary effect	243
	Differences in effect	244
PAF	RT 6: OTHER ISSUES	
27	OVERVIEW	249
28	VOTE COUNTING - A NEW NAME FOR AN OLD PROBLEM	251
	Introduction	251
	Why vote counting is wrong	252
	Vote counting is a pervasive problem	253
	Summary points	255
29	POWER ANALYSIS FOR META-ANALYSIS	257
	Introduction	257
	A conceptual approach	257
	In context	261
	When to use power analysis	262

x Contents

	Planning for precision rather than for power	263
	Power analysis in primary studies	263
	Power analysis for meta-analysis	267
	Power analysis for a test of homogeneity	272
	Summary points	275
30	PUBLICATION BIAS	277
	Introduction	277
	The problem of missing studies	278
	Methods for addressing bias	280
	Illustrative example	281
	The model	281
	Getting a sense of the data	281
	Is there evidence of any bias?	283
	Is the entire effect an artifact of bias?	284
	How much of an impact might the bias have?	286
	Summary of the findings for the illustrative example	289
	Some important caveats	290
	Small-study effects	291
	Concluding remarks	291
	Summary points	291
PAF	RT 7: ISSUES RELATED TO EFFECT SIZE	
31	OVERVIEW	295
32	EFFECT SIZES RATHER THAN p-VALUES	297
	Introduction	297
	Relationship between p-values and effect sizes	297
	The distinction is important	299
	The p-value is often misinterpreted	300
	Narrative reviews vs. meta-analyses	301
	Summary points	302
33	SIMPSON'S PARADOX	303
	Introduction	303
	Circumcision and risk of HIV infection	303
	An example of the paradox	305
	Summary points	308
34	GENERALITY OF THE BASIC INVERSE-VARIANCE METHOD	311
	Introduction	311
	Other effect sizes	312
	Other methods for estimating effect sizes	315
	Individual participant data meta-analyses	316

Contents	хí
Contents	XI

	Describes agreed to	210
	Bayesian approaches Summary points	318 319
	Summary points	319
PAF	RT 8: FURTHER METHODS	
35	OVERVIEW	323
36	META-ANALYSIS METHODS BASED ON DIRECTION AND p-VALUES	325
	Introduction	325
	Vote counting	325
	The sign test	325
	Combining p-values	326 330
	Summary points	330
37	FURTHER METHODS FOR DICHOTOMOUS DATA	331
	Introduction	331
	Mantel-Haenszel method	331 336
	One-step (Peto) formula for odds ratio	339
	Summary points	
38	PSYCHOMETRIC META-ANALYSIS	341
	Introduction	341
	The attenuating effects of artifacts	342 344
	Meta-analysis methods	344 346
	Example of psychometric meta-analysis Comparison of artifact correction with meta-regression	348
	Sources of information about artifact values	349
	How heterogeneity is assessed	349
	Reporting in psychometric meta-analysis	350
	Concluding remarks	351
	Summary points	351
PAF	RT 9: META-ANALYSIS IN CONTEXT	
39	OVERVIEW	355
40	WHEN DOES IT MAKE SENSE TO PERFORM A META-ANALYSIS?	357
	Introduction	357
	Are the studies similar enough to combine?	358
	Can I combine studies with different designs?	359
	How many studies are enough to carry out a meta-analysis?	363
	Summary points	364
41	REPORTING THE RESULTS OF A META-ANALYSIS	365
-	Introduction	365
	The computational model	366

xii Cor	ntents
---------	--------

	Forest plots	366
	Sensitivity analysis	368
	Summary points	369
42	CUMULATIVE META-ANALYSIS	37
	Introduction	371
	Why perform a cumulative meta-analysis?	373
	Summary points	376
43	CRITICISMS OF META-ANALYSIS	377
	Introduction	377
	One number cannot summarize a research field	378
	The file drawer problem invalidates meta-analysis	378
	Mixing apples and oranges	379
	Garbage in, garbage out	380
	Important studies are ignored	381
	Meta-analysis can disagree with randomized trials	381
	Meta-analyses are performed poorly	384
	Is a narrative review better?	385
	Concluding remarks	386
	Summary points	386
PAF	RT 10: RESOURCES AND SOFTWARE	
44	SOFTWARE	39
	Introduction	391
	The software	392
	Three examples of meta-analysis software	393
	Comprehensive Meta-Analysis (CMA) 2.0	395
	RevMan 5.0	398
	Stata macros with Stata 10.0	400
	Summary points	403
45	BOOKS, WEB SITES AND PROFESSIONAL ORGANIZATIONS	40!
	Books on systematic review methods	405
	Books on meta-analysis	405
	Web sites	400
RE	FERENCES	409
INI	DEX	414
~~ **		411

List of Tables

Table 3.1	Roadmap of formulas in subsequent chapters	19
Table 5.1	Nomenclature for 2×2 table of outcome by treatment	33
Table 5.2	Fictional data for a 2×2 table	33
Table 8.1	Impact of sample size on variance	52
Table 8.2	Impact of study design on variance	54
Table 14.1	Dataset 1 – Part A (basic data)	88
Table 14.2	Dataset 1 – Part B (fixed-effect computations)	88
Table 14.3	Dataset 1 – Part C (random-effects computations)	88
Table 14.4	Dataset 2 – Part A (basic data)	93
Table 14.5	Dataset 2 – Part B (fixed-effect computations)	93
Table 14.6	Dataset 2 – Part C (random-effects computations)	93
Table 14.7	Dataset 3 – Part A (basic data)	98
Table 14.8	Dataset 3 - Part B (fixed-effect computations)	98
Table 14.9	Dataset 3 – Part C (random-effects computations)	98
Table 16.1	Factors affecting measures of dispersion	119
Table 18.1	Dataset 1 – Part D (intermediate computations)	136
Table 18.2	Dataset 1 – Part E (variance computations)	136
Table 18.3	Dataset 2 – Part D (intermediate computations)	140
Table 18.4	Dataset 2 – Part E (variance computations)	140
Table 18.5	Dataset 3 – Part D (intermediate computations)	144
Table 18.6	Dataset 3 – Part E (variance computations)	144
Table 19.1	Fixed effect model – computations	152
Table 19.2	Fixed-effect model – summary statistics	155
Table 19.3	Fixed-effect model – ANOVA table	158
Table 19.4	Fixed-effect model – subgroups as studies	159
Table 19.5	Random-effects model (separate estimates of τ^2) –	
	computations	165
Table 19.6	Random-effects model (separate estimates of τ^2) –	
	summary statistics	167
Table 19.7	Random-effects model (separate estimates of τ^2) –	
	ANOVA table	169
Table 19.8	Random-effects model (separate estimates of τ^2) –	
	subgroups as studies	171
Table 19.9	Statistics for computing a pooled estimate of τ^2	173
Table 19.10	Random-effects model (pooled estimate of τ^2) –	
	computations	173

Table 19.11	Random-effects model (pooled estimate of τ^2) – summary statistics	175
Гable 19.12	Random-effects model (pooled estimate of τ^2) – ANOVA	178
F-13- 10 12	table Random-effects model (pooled estimate of τ^2) – subgroups	178
Table 19.13	as studies	179
Γable 20.1	The BCG dataset	190
Table 20.1 Γable 20.2	Fixed-effect model – Regression results for BCG	190
Table 20.2 Γable 20.3	Fixed-effect model – ANOVA table for BCG regression	191
Fable 20.3	Random-effects model – regression results for BCG	197
Table 20.5	Random-effects model – test of the model	198
Table 20.6	Random-effects model – comparison of model (latitude)	1,70
14010 20.0	versus the null model	202
Γable 23.1	Independent subgroups – five fictional studies	218
Γable 23.2	Independent subgroups – summary effect	219
Гable 23.3	Independent subgroups – synthetic effect for study 1	220
Γable 23.4	Independent subgroups – summary effect across studies	220
Γable 24.1	Multiple outcomes – five fictional studies	226
Гable 24.2	Creating a synthetic variable as the mean of two outcomes	227
Гable 24.3	Multiple outcomes – summary effect	230
Гable 24.4	Multiple outcomes – Impact of correlation on variance of	
	summary effect	231
Γable 24.5	Creating a synthetic variable as the difference between two	
	outcomes	233
Γable 24.6	Multiple outcomes – difference between outcomes	235
Γable 24.7	Multiple outcomes - Impact of correlation on the variance of	
	difference	237
Table 33.1	HIV as function of circumcision (by subgroup)	304
Γable 33.2	HIV as function of circumcision – by study	305
Table 33.3	HIV as a function of circumcision – full population	306
Γable 33.4	HIV as a function of circumcision – by risk group	306
Γable 33.5	HIV as a function of circumcision/risk group – full	
	population	307
Γable 34.1	Simple example of a genetic association study	314
Table 36.1	Streptokinase data - calculations for meta-analyses of	
	p-values	329
Table 37.1	Nomenclature for 2×2 table of events by treatment	331
Table 37.2	Mantel-Haenszel – odds ratio	333
Table 37.3	Mantel-Haenszel – variance of summary effect	334
Table 37.4	One-step – odds ratio and variance	338
Table 38.1	Fictional data for psychometric meta-analysis	346
Table 38.2	Observed (attenuated) correlations	346
Table 38.3	Unattenuated correlations	347

List of Figures

Figure 1.1 High-dose versus standard-dose of statins (adapted		
_	from Cannon et al., 2006)	4
Figure 2.1	Impact of streptokinase on mortality (adapted from Lau	
	et al., 1992)	10
Figure 4.1	Response ratios are analyzed in log units	31
Figure 5.1	Risk ratios are analyzed in log units	34
Figure 5.2	Odds ratios are analyzed in log units	36
Figure 6.1	Correlations are analyzed in Fisher's z units	42
Figure 7.1	Converting among effect sizes	46
Figure 8.1	Impact of sample size on variance	53
Figure 8.2	Impact of study design on variance	54
Figure 10.1	Symbols for true and observed effects	62
Figure 11.1	Fixed-effect model – true effects	64
Figure 11.2	Fixed-effect model – true effects and sampling error	64
Figure 11.3	Fixed-effect model – distribution of sampling error	65
Figure 12.1	Random-effects model - distribution of true effects	70
Figure 12.2	Random-effects model - true effects	70
Figure 12.3	Random-effects model - true and observed effect in	
	one study	71
Figure 12.4	Random-effects model - between-study and within-study	
	variance	72
Figure 13.1	Fixed-effect model – forest plot showing relative weights	78
Figure 13.2	Random-effects model - forest plot showing relative	
	weights	78
Figure 13.3	Very large studies under fixed-effect model	80
Figure 13.4	Very large studies under random-effects model	80
Figure 14.1	Forest plot of Dataset 1 – fixed-effect weights	89
Figure 14.2	Forest plot of Dataset 1 - random-effects weights	89
Figure 14.3	Forest plot of Dataset 2 - fixed-effect weights	94
Figure 14.4	Forest plot of Dataset 2 - random-effects weights	94
Figure 14.5	Forest plot of Dataset 3 – fixed-effect weights	99
Figure 14.6	Forest plot of Dataset 3 – random-effects weights	99
Figure 16.1	Dispersion across studies relative to error within	
	studies	108
Figure 16.2	Q in relation to df as measure of dispersion	110

Figure 16.3	Flowchart showing how T^2 and I^2 are derived	
C	from Q and df	111
Figure 16.4	Impact of Q and number of studies on the p -value	113
Figure 16.5	Impact of excess dispersion and absolute dispersion on T^2	115
Figure 16.6	Impact of excess and absolute dispersion on T	116
Figure 16.7	Impact of excess dispersion on I^2	118
Figure 16.8	Factors affecting T^2 but not I^2	120
Figure 16.9	Factors affecting I^2 but not T^2	121
Figure 17.1	Prediction interval based on population parameters μ and τ^2	130
Figure 17.2	Prediction interval based on sample estimates M^* and T^2	130
Figure 17.3	Simultaneous display of confidence interval and prediction interval	131
Figure 17.4	Impact of number of studies on confidence interval and prediction interval	132
Figure 18.1	Forest plot of Dataset 1 – random-effects weights with prediction interval	136
Figure 18.2	Forest plot of Dataset 2 – random-effects weights with prediction interval	140
Figure 18.3	Forest plot of Dataset 3 – random-effects weights with	140
rigule 16.5	prediction interval	144
Figure 19.1	Fixed-effect model – studies and subgroup effects	151
Figure 19.1	Fixed-effect – subgroup effects	155
Figure 19.2	Fixed-effect model – treating subgroups as studies	159
Figure 19.4	Flowchart for selecting a computational model	163
Figure 19.5	Random-effects model (separate estimates of τ^2) – studies	103
11guic 17.5	and subgroup effects	164
Figure 19.6	Random-effects model (separate estimates of τ^2) –	107
11gate 17.0	subgroup ffects	167
Figure 19.7	Random-effects model (separate estimates of τ^2) – treating subgroups as studies	170
Figure 19.8	Random-effects model (pooled estimate of τ^2) – studies	1,0
8	and subgroup effects	172
Figure 19.9	Random-effects model (pooled estimate of τ^2) – subgroup	
Figure 10.10	effects Pendam effects model (model destinate of 2)	176
Figure 19.10	Random-effects model (pooled estimate of τ^2) – treating	170
Figure 10.11	subgroups as studies	179
Figure 19.11	A primary study showing subjects within groups	180
Figure 19.12	Random-effects model – variance within and between subgroups	182
Figure 19.13	Proportion of variance explained by subgroup membership	182
Figure 20.1	Fixed-effect model – forest plot for the BCG data	189
Figure 20.2	Fixed-effect model – regression of log risk ratio on latitude	193

Figure 20.3	Fixed-effect model – population effects as function of	104
Eiguna 20.4	covariate	194
Figure 20.4	Random-effects model – population effects as a function of covariate	194
Figure 20.5	Random-effects model – forest plot for the BCG data	197
Figure 20.6	Random-effects model – regression of log risk ratio on	
_	latitude	199
Figure 20.7	Between-studies variance (T^2) with no covariate	201
Figure 20.8	Between-studies variance (T^2) with covariate	201
Figure 20.9	Proportion of variance explained by latitude	202
Figure 23.1	Creating a synthetic variable from independent subgroups	219
Figure 28.1	The <i>p</i> -value for each study is > 0.20 but the <i>p</i> -value	
	for the summary effect is < 0.02	252
Figure 29.1	Power for a primary study as a function of n and δ	267
Figure 29.2	Power for a meta-analysis as a function of number studies	
	and δ	269
Figure 29.3	Power for a meta-analysis as a function of number	
	studies and heterogeneity	272
Figure 30.1	Passive smoking and lung cancer – forest plot	282
Figure 30.2	Passive smoking and lung cancer – funnel plot	283
Figure 30.3	Passive smoking and lung cancer – funnel plot with	
	imputed studies	287
Figure 30.4	Passive smoking and lung cancer – cumulative	
	forest plot	288
Figure 32.1	Estimating the effect size versus testing the null	
	hypothesis	298
Figure 32.2	The p -value is a poor surrogate for effect size	300
Figure 32.3	Studies where p -values differ but effect size is the same	300
Figure 32.4	Studies where p -values are the same but effect sizes	
	differ	301
Figure 32.5	Studies where the more significant p -value corresponds	
	to weaker effect size	301
Figure 33.1	HIV as function of circumcision – by study	304
Figure 33.2	HIV as function of circumcision – in three sets of studies	308
Figure 36.1	Effect size in four fictional studies	328
Figure 41.1	Forest plot using lines to represent the effect size	367
Figure 41.2	Forest plot using boxes to represent the effect size and	247
	relative weight	367
Figure 42.1	Impact of streptokinase on mortality – forest plot	372
Figure 42.2	Impact of streptokinase on mortality – cumulative	272
	forest plot	373
Figure 43.1	Forest plot of five fictional studies and a new trial	200
	(consistent effects)	382

XVIII			
ATIII			

Figure 43.2	Forest plot of five fictional studies and a new trial			
-	(heterogeneous effects)	383		
Figure 44.1	CMA – data entry screen for 2×2 tables	395		
Figure 44.2	CMA – analysis screen	396		
Figure 44.3	CMA – high resolution forest plot	397		
Figure 44.4	RevMan – data entry screen for 2×2 tables	398		
Figure 44.5	RevMan – analysis screen	399		
Figure 44.6	Stata macros – data entry screen for 2×2 tables	401		
Figure 44.7	Stata macros – analysis screen	401		
Figure 44.8	Stata macros – high resolution forest plot	402		

List of Figures