Contents

List of Figures Foreword Preface								
					I	Math	ematical Foundations	1
					1	Mat	Mathematical Preliminaries: Energy and Stress 3	
	1.1	Finite Kinetic Energy: The Hilbert Space $L^2(\Omega)$	3					
		1.1.1 Other norms	7					
	1.2	Finite Stress: The Hilbert Space $X := H_0^1(\Omega) \dots \dots \dots \dots$	8					
		1.2.1 Weak derivatives and some useful inequalities	10					
	1.3	Some Snapshots in the History of the Equations of Fluid Motion	12					
	1.4	Remarks on Chapter 1	15					
	1.5	Exercises	15					
2	Approximating Scalars 17							
	2.1	Introduction to Finite Element Spaces	17					
	2.2	An Elliptic Boundary Value Problem	26					
	2.3	The Galerkin–Finite Element Method	30					
	2.4	Remarks on Chapter 2	33					
	2.5	Exercises	34					
3	Vector and Tensor Analysis 37							
	3.1	Scalars, Vectors, and Tensors	37					
	3.2	Vector and Tensor Calculus	39					
	3.3	Conservation Laws	43					
	3.4	Remarks on Chapter 3	48					
	35	Exercises	49					

II	Stead	ly Fluid Flow Phenomena	51	
4	Арр	proximating Vector Functions	53	
	4.1	Introduction to Mixed Methods for Creeping Flow	. 53	
	4.2	Variational Formulation of the Stokes Problem	. 56	
	4.3	The Galerkin Approximation	. 59	
	4.4	More About the Discrete Inf-Sup Condition	. 63	
		4.4.1 Other div-stable elements	. 66	
	4.5	Remarks on Chapter 4	. 66	
	4.6	Exercises	. 68	
5	The Equations of Fluid Motion			
	5.1	Conservation of Mass and Momentum	. 71	
	5.2	Stress and Strain in a Newtonian Fluid	. 74	
		5.2.1 More about internal forces	. 75	
		5.2.2 More about V	. 76	
	5.3	Boundary Conditions	. 78	
	5.4	The Reynolds Number	. 83	
	5.5	Boundary Layers	. 87	
	5.6	An Example of Fluid Motion: The Taylor Experiment	. 91	
	5.7	Remarks on Chapter 5	. 92	
	5.8	Exercises	95	
6	The Steady Navier–Stokes Equations			
	6.1	The Steady Navier-Stokes Equations	. 99	
	6.2	Uniqueness for Small Data	. 106	
		6.2.1 The Oseen problem	108	
	6.3	Existence of Steady Solutions	. 110	
	6.4	The Structure of Steady Solutions	. 114	
	6.5	Remarks on Chapter 6	. 117	
	6.6	Exercises	. 117	
7	Approximating Steady Flows			
	7.1	Formulation and Stability of the Approximation	. 121	
	7.2	A Simple Example	. 124	
	7.3	Errors in Approximations of Steady Flows	. 125	
	7.4	More on the Global Uniqueness Conditions	. 131	
	7.5	Remarks on Chapter 7	132	
	7.6	Exercises	133	
m	Time	-Dependent Fluid Flow Phenomena	137	
8	The	Time-Dependent Navier-Stokes Equations	139	
_	8.1	Introduction	139	
	8.2	Weak Solution of the NSE	141	

	8.3	Kinetic Energy and Energy Dissipation	. 145
	8.4	Remarks on Chapter 8	. 147
	8.5	Exercises	. 148
9	Approximating Time-Dependent Flows		
	9.1	Introduction	. 151
	9.2	Stability and Convergence of the Semidiscrete Approximations	. 154
	9.3	Rates of Convergence	. 158
	9.4	Time-Stepping Schemes	. 161
	9.5	Convergence Analysis of the Trapezoid Rule	. 165
		9.5.1 Notation for the discrete time method	. 165
		9.5.2 Error analysis of the trapezoid rule	. 168
	9.6	Remarks on Chapter 9	. 175
	9.7	Exercises	. 176
10	Mod	els of Turbulent Flow	179
	10.1	Introduction to Turbulence	. 179
	10.2	The K41 Theory of Homogeneous, Isotropic Turbulence	. 181
		10.2.1 Fourier series	. 182
		10.2.2 The inertial range	. 183
	10.3	Models in Large Eddy Simulation	. 186
		10.3.1 A first choice of ν_T	. 189
	10.4	The Smagorinsky Model for v_T	. 190
	10.5	Near Wall Models: Boundary Conditions for the Large Eddies	. 192
	10.6	Remarks on Chapter 10	. 194
	10.7	Exercises	. 195
App	endix	Nomenclature	197
	A.1	Vectors and Tensors	. 197
	A.2	Fluid Variables	. 197
	A.3	Basic Function Spaces and Norms	. 198
		A.3.1 Other norms	. 198
	A.4	Velocity and Pressure Spaces and Norms	. 199
	A.5	Finite Element Notation	. 200
	A.6	Turbulence	. 200
Bibl	iograp	hy	203
Inde	Index		