0.	Einleitung	1

1.	Grundlagen der ESR/ENDOR-Spektroskopie, Experimentelles			
	und Zentrenpräparation	6		
1.1.	Der Spin-Hamilton-Operator	6		
1.1.1.	Lösung des Eigenwertproblems	9		
1.2.	Meßverfahren der konventionellen ESR/ENDOR-Spektroskopie	12		
1.2.1.	Elektronenspinresonanz (ESR)	12		
1.2.2.	Elektronen-Kern-Doppelresonanz (ENDOR)	13		
1.2.2.1.	ENDOR-induzierte ESR (EI-ESR) und Doppel-ENDOR	14		
1.3.	Optisch nachgewiesene magnetische Resonanz	15		
1.3.1.	Optische Absorption und magnetischer Zirkulardichroismus	15		
1.3.2.	Optisch nachgewiesene ESR (ODESR) und ENDOR			
	(ODENDOR)	18		
1.4.	Spektrenbehandlung und Spektrenauswertung	19		
1.5.	Spektrometerbeschreibung	20		
1.6.	Kristallzucht und Zentrenpräparation	22		
2.	Experimentelle Ergebnisse: F _H (OH ⁻)-Zentren in KBr und KJ	24		
2.1.	Optische Untersuchungen an F _H (OH ⁻)-Zentren in KBr	24		
2.1.1.	Absorption und MCD	24		
2.1.2.	ODESR- und ODENDOR-Messungen	28		
2.2.	ESR/ENDOR-Untersuchungen an F _H (OH ⁻)-Zentren in KBr	32		
2.2.1.	Optische Bistabilität	35		
2.2.2.	Thermische Bistabilität	37		
2.2.3.	H-ENDOR der Blauen und Roten Zentren	39		
2.2.4.	K- und Br-ENDOR der Blauen und Roten Zentren	43		
2.2.5.	Doppel-ENDOR-Messungen	49		

2.3.	Optische Messungen und ENDOR an F _H (OH ⁻)-Zentren in KJ	54
3.	Interpretation und Diskussion der Ergebnisse an $\mathbf{F_{H}(OH^{\circ})\text{-}Zentren}$	58
3.1.	Theoretische Deutung der Shf-Wechselwirkungsparameter	58
3.2. 3.2.1.	Die Struktur des F _H (OH ⁻)-Zentrums in KCl Temperaturabhängigkeit der Shf-Wechselwirkungsparameter	62 64
3.3.	Struktur der Blauen und Roten Zentren in KBr und KJ	74
3.4.	Modell der optischen und thermischen Bistabilität	88
4.	Experimentelle Ergebnisse: Fe ³⁺ in einem kongruenten LiTaO ₃ -Kristall	92
4.1.	ESR-Untersuchung	92
4.2.	ENDOR-Untersuchung	97
4.3.	Analyse der Meßergebnisse	99
5.	Schlußbemerkung	109
6.	Zusammenfassung	111
	Literaturverzeichnis	113

•