Contents

Preface

1 Symmetry Elements and Operations
 1.1 Introduction
 1.2 Symmetry Elements and Operations
 1.2.1 Proper Rotations: C_n
 1.2.2 The Plane of Symmetry: σ
 1.2.3 The Inversion Centre: i
 1.3 Examples of the Impact of Geometric Symmetry on Chemistry
 1.3.1 Oxygen Transfer via Metal Porphyrins
 1.3.2 Nuclear Magnetic Resonance: Chemical Equivalence
 1.4 Summary
 1.5 Self-Test Questions

2 More Symmetry Operations and Products of Operations
 2.1 Introduction
 2.2 Background to Point Groups
 2.3 Closed Groups and New Operations
 2.3.1 Products of Operations
 2.3.2 Fixed Symmetry Elements
 2.3.3 The Final Missing Operation, Improper Rotations: S_n
 2.3.4 Equivalences for Improper Rotation Operations
 2.4 Properties of Symmetry Operations
 2.4.1 Equivalent Operations and Equivalent Atoms
 2.4.2 The Inverse of an Operation
 2.4.3 The Order of the Product; Operations that Commute
 2.5 Chirality and Symmetry
 2.6 Summary
 2.7 Completed Multiplication Tables
 2.8 Self-Test Questions

3 The Point Groups Used with Molecules
 3.1 Introduction
 3.2 Molecular Classification Using Symmetry Operations
 3.3 Constructing Reference Models with Idealized Symmetry
5.3 Finding Reducible Representations 110
5.4 Properties of Point Groups and Irreducible Representations 112
5.5 The Reduction Formula 118
 5.5.1 Applying the Reduction Formula 120
5.6 A Complete Set of Vibrational Modes for H2O 122
5.7 Choosing the Basis Set 126
 5.7.1 Carbonyl Stretching Modes of [Fe(CO)5], D3h 126
5.8 The d-Orbitals in Common Transition Metal Complex Geometries 128
 5.8.1 Square Planar, D4h 132
 5.8.2 Tetrahedral, Td 137
 5.8.3 Octahedral, Oh 142
 5.8.4 Trigonal Bipyramidal, D3h 147
5.9 Linear Molecules: Groups of Infinite Order 154
5.10 Summary 161
5.11 Self-Test Questions 162

6 Applications in Vibrational Spectroscopy 163
6.1 Introduction 163
6.2 Selection Rules 165
 6.2.1 Infrared Spectroscopy 165
 6.2.2 Infrared Absorption and the Greenhouse Gases 173
 6.2.3 Interstellar H2 177
 6.2.4 Raman Spectroscopy 177
 6.2.5 Comparison of Infrared and Raman Selection Rules 184
6.3 General Approach to Analysing Vibrational Spectroscopy 186
 6.3.1 Example: the C—H Stretch Bands of 1,4-Difluorobenzene 187
6.4 Symmetry-Adapted Linear Combinations 190
6.5 Normalization 193
6.6 The Projection Operator Method 195
 6.6.1 Projection Operator Applied to the C—H Stretches of 1,4-Difluorobenzene 196
 6.6.2 The Projection Operator and Degenerate Representations 198
6.7 Linking Results for Symmetry-Inequivalent Sets of Atoms 202
 6.7.1 Sets of Atoms Differing in Mass or Chemical Bond Strength 203
6.8 Additional Examples 206
 6.8.1 Benzene, D6h 206
 6.8.2 The fac and mer Isomers of Transition Metal Complexes 212
6.9 Summary 215
6.10 Self-Test Questions 216
Further Reading 217

7 Symmetry in Chemical Bonding 219
7.1 Introduction 219
 7.1.1 Wave Phenomena and Interference 220
 7.1.2 The Born Interpretation of the Wavefunction 222
Contents

7.2 Bond Energies
 7.2.1 The Symmetry-Adapted Linear Combinations for the Molecular Orbitals of \(\text{H}_2^+ \) and \(\text{H}_2 \) 228
 7.2.2 The Chemical Bond Energy from Molecular Orbitals 232
 7.2.3 The Molecular Orbital Energy 236
 7.2.4 Bond Order 238

7.3 The Relative Energies of Hydrogen-Like Atomic Orbitals 239
 7.3.1 Radial Behaviour of Atomic Orbitals 239
 7.3.2 The Relative Energies of Atomic Orbitals in Different Elements 242
 7.3.3 The Relative Energies of Atomic Orbitals from Electronegativity 244

7.4 The Molecules Formed by Other Second-Row Elements with Hydrogen 252
 7.4.1 \(\text{BeH}_2 \), Beryllium Hydride 252
 7.4.2 \(\text{BH}_3 \), Boron Hydride 253
 7.4.3 \(\text{CH}_4 \), Methane 258
 7.4.4 \(\text{NH}_3 \), Ammonia 264
 7.4.5 \(\text{H}_2\text{O} \), Water 269

7.5 The Second-Row Diatomic Molecules 270
 7.5.1 Homonuclear Diatomics 270
 7.5.2 Heteronuclear Diatomics of Second-Row Elements 276

7.6 More Complex Polyatomic Molecules 278
 7.6.1 Ethene 278

7.7 Metal Complexes
 7.7.1 Complexes Containing \(\sigma \)-Donor Ligands 284
 7.7.2 The Jahn–Teller Effect 287
 7.7.3 Complexes Containing Ligand Orbitals of \(\pi \)-Symmetry 291

7.8 Summary 295
7.9 Self-Test Questions 296
Further Reading 297

Appendices

Appendix 1 H\(_2\)O Models for Identifying the Results of Symmetry Operation Products 299

Appendix 2 Assignment of Chiral Centre Handedness using Cahn–Ingold–Prelog Rules 303

Appendix 3 Model of a Tetrahedron and the Related Cube 307

Appendix 4 Model of an Octahedron 313
Appendix 5 Matrices and Determinants 317

A5.1 Matrices as Representations of Symmetry Operators 317
A5.1.1 Products of Matrices 318
A5.1.2 Products of Matrices, Expressed as Summations 319
A5.2 Matrices for Solving Sets of Linear Equations 321
Further Reading 324

Appendix 6 The Mathematical Background to Infrared Selection Rules 325

A6.1 Model Based on Classical Mechanics 325
A6.2 Model Based on Quantum Mechanics 328
A6.3 Excited Vibrational States 333
A6.4 Vibrational Modes for Polyatomic Molecules 335
A6.5 Generalization to Arbitrary Transitions 336
A6.6 Summary of Selection Rules 337
Further Reading 338

Appendix 7 The Franck–Condon Principle 339

Appendix 8 Classical Treatment of Stokes/Anti-Stokes Absorption 343

Appendix 9 The Atomic Orbitals of Hydrogen 345

A9.1 Choice of Coordinate System 347
A9.2 Separation of Variables 348
A9.3 The Angular Equation 349
A9.4 Physical Interpretation of the Angular Equation Solutions 354
A9.5 Angular Momentum 356
A9.6 The Radial Equation 359
A9.7 The Complete Atomic Orbitals 361
A9.8 Expectation Values 364
A9.9 Real Combinations to Form the Familiar Atomic Orbitals 367
A9.10 Cartesian Forms of the Real Angular Functions 369
A9.11 Endnote on Imaginary Numbers 370
Further Reading 373

Appendix 10 The Origin of Chemical Bonding in \(\text{H}_2^+ \) 375

A10.1 Chemical Bond Formation 376
A10.2 \(\text{H} \) Atom and \(\text{H}^+ \) Cation 376
A10.3 The Virial Theorem 379
A10.4 \(\text{H}_2^+ \) Molecule 381
A10.5 Choice of Coordinate System for \(\text{H}_2^+ \): Cylindrical Polar Coordinates 383
A10.6 H$_2^+$: the Electron Kinetic Energy
A10.7 H$_2^+$: the Electronic Potential Energy
A10.8 The Chemical Bond Formation Energy Based on Rigid Atomic Orbitals
A10.9 Optimal Radial Decay of Molecular Orbitals

Appendix 11 H$_2$O Molecular Orbital Calculation in C$_2v$ Symmetry

Appendix 12 Character Tables
A12.1 Non-Axial Groups
A12.2 Axial Groups
 A12.2.1 C$_a$ Groups
 A12.2.2 S$_a$ Groups
 A12.2.3 C$_{nv}$ Groups
 A12.2.4 C$_{nh}$ Groups
 A12.2.5 D$_a$ Groups
 A12.2.6 D$_{nd}$ Groups
 A12.2.7 D$_{nh}$ Groups
A12.3 Cubic Groups
 A12.3.1 Tetrahedral, T$_d$
 A12.3.2 Rotational Subgroup of T$_d$, T
 A12.3.3 Octahedral, O$_h$
 A12.3.4 Rotational Subgroup of O$_h$, O
A12.4 Groups for Linear Molecules

Index