Table of Contents

Chapter 1. Introduction	j
1.1. Historical background	1
1.2. Considering the plastic and rheological properties of materials	
in calculating and designing resistance structures for constructions	3
1.3. The basis of the mathematical model for calculating	
resistance structures by taking into account the rheological properties	
of the materials	4
Chapter 2. The Rheological Behavior of Building Materials	ç
2.1. Preamble	ç
2.2. Structural steel for construction	19
2.2.1. Structural steel for metal construction	19
2.2.2. Reinforcing steel (non-prestressed)	22
2.2.3. Reinforcements, steel wire and steel wire products	
for prestressed concrete	23
2.3. Concrete	32
Chapter 3. Composite Resistance Structures with Elements Built	
from Materials Having Different Rheological Properties	45
3.1. Mathematical model for calculating the behavior of composite	
resistance structures: introduction	45
3.2. Mathematical model for calculating the behavior of composite	
resistance structures. The formulation considering creep	49
3.2.1. The effects of the long-term actions and loads: overview	49
3.2.1.1. Composite structures with discrete collaboration	61
3.2.1.2. Composite structures with continuous collaboration	67
3.2.1.3. Composite structures with complex composition	80
3.2.2. The effect of repeated short-term variable load actions: overview.	86

3.3. Mathematical model for calculating the behavior of composite	
resistance structures. The formulation considering stress relaxation	95
3.3.1. The effect of long-term actions and loads: overview	95
3.3.1.1. Composite structures with discrete collaboration	102
3.3.1.2. Composite structures with continuous collaboration	106
3.3.1.3. Composite structures with complex composition	115
3.3.2. The effect of repeated short-term variable actions and loads:	
overview	120
3.4. Conceptual aspects of the mathematical model of resistance	120
3.4. Conceptual aspects of the matternation model of resistance	
structure behavior according to the rheological properties	125
of the materials from which they are made	123
Chapter 4. Applications on Resistance Structures for Constructions	129
4.1. Correction matrix	129
4.1.1. The displacement matrix of the end of a perfectly rigid body	
due to unit displacements successively applied to the other end	
of a rigid body	130
4.1.2. The reaction matrix of the end of a perfectly rigid body due to	
unit forces successively applied to the other end of a rigid body	132
4.2. Calculation of the composite resistance structures.	
Formulation according to the creep	133
4.2.1. Preliminaries necessary to systematize the calculation	
of composite structures in the formulation according to the creep	133
4.2.2. Composite structures with discrete collaboration	136
4.2.3. Composite structures with continuous collaboration	140
4.2.4. Composite structures with complex composition	155
4.2.4. Composite structures with complex composition	155
4.3. The calculation of composite resistance structures.	161
Formulation according to the stress relaxation.	101
4.3.1. Preliminaries necessary to systematize the calculation of	
the composite structures in the formulation according	161
to the stress relaxation	
4.3.2. Composite structures with discrete collaboration	
4.3.3. Composite structures with continuous collaboration	172
4.3.4. Composite structures with complex composition	179
Chapter 5. Numerical Application	189
5.1. Considerations concerning the validation of the mathematical	
model proposed for estimation through calculation of the behavior	
of the resistance structures by considering the rheological properties	
of the resistance structures by considering the meological properties	189
of the materials	
5.2. The RALUCA computer applications system	
5.3. The resistance structure	
5.4. Numerical experiments	20.

AD 1 1		2	
Tab	le oi	Con	tents

vii

5.4.1. The first series of experiments	203
5.4.1.1. The particular conditions for the analysis	
of the mathematical model	204
5.4.2. The second series of experiments	206
5.4.2.1. The particular conditions for the analysis	
of the mathematical model	206
5.4.3. The third series of experiments	211
5.4.3.1. The influence of the parameters defining the creep function	211
•	211
5.4.3.2. The stresses state in the structure caused	
by the contraction of the concrete	214
5.4.3.3. The influence of the deformability of the connection elements	
on the effort's distribution among the elements of the structure	217
•	
Appendix 1. The Initial Stresses and Strains State of the Structures with	
Continuous Collaboration	223
A.1. Simply supported beam with uniformly distributed load	227
A.2. Simply supported beam loaded with a concentrated force	230
A.3. Simply supported beam loaded with a concentrated moment	
	233
at each end	233
A.4. Simply supported beam loaded with concentrated forces applied	
eccentrically, acting on a direction parallel with the axis of the beam	235
Appendix 2. Systems of Integral and Integro-differential Equations	241
1. Integro-differential equations whose unknown factors are functions	
of one variable	242
2. Integro-differential equations whose unknown factors are functions	
	251
of two variables	231
3. Integro-differential equations whose unknown factors are functions	
of one or two variables	260
	202
Bibliography	283
	20~
Index	287