Contents

Preface xiv		1.7.2	Interrelationships among the C, S, P, N and O cycles 24
		1.7.3	Bacterial and biochemical cycles in the sedimentation of a lake 24
1	Material Cycles	1.7.4	Anthropogenously related surface
1.1	Geochemical cycles		material flow 26
1.1.1	Environmental areas 2	1.7.5	Material cycles with links to the
1.1.2	Endogenous and exogenous material		environment 26
	cycles 2	1.7.6	The ecologically orientated material cycle 28
1.1.3	The geological material cycle 4		cycle 26
1.1.4	The 'crust–ocean machine' 4		
1.1.5	The Earth as a biogeochemical	_	
	factory 6	2	The Atmosphere
1.2	The carbon cycle	2.1	Physicochemical processes
1.2.1	Mineralisation and biosynthesis 8	2.1.1	Global energy balance 30
1.3	The nitrogen cycle	2.1.2	Composition of the atmosphere 30
1.3.1	The global nitrogen cycle 10	2.1.3	Basic physicochemical
1.3.2	Anthropogenic effects 10		processes 32
1.3.3	Ammonification, nitrification, denitrification 12	2.1.4	Box model of atmospheric chemistry 32
1.4	The sulphur cycle	2.1.5	Linking the carbon and oxygen
1.4.1	The global sulphur cycle 14		cycles 34
1.4.2	The biochemical sulphur cycle 14	2.1.6	Role of carbon dioxide 34
1.4.3	Environmentally relevant sulphur compounds 16	2.1.7	General behaviour of trace elements in the atmosphere 36
1.4.4	Emissions and transformations 16	2.1.8	Cycle of atmospheric aerosol
1.5	The phosphorus cycle		particles 36
1.5.1	The global phosphorus cycle 18	2.2	Ecological photochemistry
1.5.2	The biogeochemical phosphorus	2.2.1	Chemistry and photochemistry 38
	cycle 18	2.2.2	Emission and deposition under different weather conditions 38
1.6	Metal cycles	222	
1.6.1	The global anthropogenous cycle 20	2.2.3	Catalytic cycles of atmospheric ozone chemistry 40
1.6.2	The geochemical cycle 20	2.2.4	Ozone: formation and decomposition 42
1.6.3	The biogeochemical cycle 20	2.2.5	Ozone and the catalytic NO_x
		4.4.3	cycles 42
1.7	Special cycles	2.2.6	Photochemistry of the OH
1.7.1	Cycles of environmental	2.2.0	radical 44
	chemicals 22	2.2.7	Scheme of the catalytic HO _x cycles 44

2.2.8	Scheme of halogen photochemistry in the atmosphere 46	2.5.3	Thermal decomposition of organic materials 64
2.2.9	The global atmospheric chlorine cycle 46	2.5.4	Formation and thermal decomposition of chlorinated
2.2.10	Scheme of the catalytic ClO _x cycle 46		dibenzodioxins and dibenzofurans 64
2.2.11	Splitting of chlorofluoromethanes 46	2.5.5	Combination process for cleaning exhaust gas 66
2.3	Air pollution from combustion	2.5.6	Catalytic NO _x reduction 66
2.3.1	Sources of air pollution 48	2.5.7	Desulphurisation processes 66
2.3.2	Quantification of air pollutants according to source 48	2.5.8	Simultaneous processes for desulphurisation and denitration of exhaust gas 68
2.3.3	Emissions from burning vegetation 48	2.5.9	Adsorption plant for solvent
2.3.4	Nitrogen oxide: formation and lowering of levels 50	2.5.10	Construction of a biological
2.4	Anthropogenous pollutants and their effects	2.5.11	gas-washing plant 68 Automobile exhaust and its
2.4.1	Anthropogenous emissions in West Germany in 1984 52	2.5.12	cleaning 70 Landfill gases and low-pollution
2.4.2	Immissions near ground level 52		combustion 72
2.4.3	Pollutant flows during waste incineration 54		
2.4.4	Waste incineration in Germany 54	3	Water
2.4.5	Acid formation from NO _x and SO ₂ 56	3.1	The Earth's water cycle
2.4.6	Air pollution as a stress factor in the	3.1.1	The hydrological cycle 74
	ecosystem of a forest 56	3.1.2	Box model for water chemistry 74
2.4.7	Deposition of fine particles in the	3.1.3	Distribution of water by volume 74
2.4.8	human respiratory tract 58 Points of attack in the respiratory	3.1.4	Quantitative water content of the Earth 76
20	tract dependent on water solubility 58	3.1.5	Average water content in Germany 76
2.4.9	Effects of CO in the bloodstream 58	3.1.6	Interactions between water and land 78
2.4.10	Sources of pollution in living and working environments 60	3.1.7	Food chain and material cycle in bodies of water 80
2.5	Principles of air quality control	3.1.8	Quantified material cycle in the open
2.5.1	Techniques for cleaning	2.1.0	sea 80
6	exhaust air 62	3.1.9	Water cycle with anthropogenic influences 82
2.5.2	Comparison of different dust particle separation systems 64		minuciaces 62

- 3.1.10 Water cycle in the area of water-soil-vegetation 82
- 3.1.11 pH-pE diagrams with atmospheric influences 84
- 3.1.12 Carbon species in bodies of water 84
- 3.2 Chemistry in bodies of water
- 3.2.1 Equilibrium diagrams of some molecule/ion systems 86
- 3.2.2 Carbonate species in rainwater 86
- 3.2.3 Ca²⁻ and HCO₃ ions in rivers 86
- 3.2.4 Solubility of aluminium species 8
- 3.2.5 Species partition of Al–hydroxo complexes 88
- 3.2.6 Equilibria between nitrate and ammonium ions 88
- 3.2.7 Conversion of ammonium in running waters 88
- 3.2.8 pE-pH diagram for iron species 90
- 3.2.9 Concentration-pE diagrams for chlorine species 90
- 3.2.10 Genesis of rainwater 92
- 3.2.11 Pathways of emitted acid producers and their effects on animals in water 92
- 3.2.12 Emission and transport processes of trace metals in riverbeds 94
- 3.2.13 Cycles and reactions of metals in bodies of water 94
- 3.2.14 Reactions of metal ions in a lake 96
- 3.2.15 Areas of existence of metal-aquo complexes, water hydroxo and oxo complexes 96
- 3.3 Processes for the preparation of drinking water
- 3.3.1 Preparation of Danube River water for use as drinking water 98
- 3.3.2 Classical processes for the preparation of drinking water 100
- 3.3.3 Electrodialysis in a three-chamber cell 100

- 3.3.4 Desalination of water by reverse osmosis 100
- 3.4 Basic principles of waste water chemistry and sewage treatment
- 3.4.1 Local treatment plant as a direct discharger 102
- 3.4.2 Layout of a mechanical-biological water treatment plant 102
- 3.4.3 Composition of sewage and its possible treatment 104
- 3.4.4 Variations in the amount of municipal sewage 104
- 3.4.5 Biochemical oxygen demand, BOD 104
- 3.4.6 Anaerobic degradation of organic materials 106
- 3.4.7 Basic principles of anaerobic purification processes 106
- 3.4.8 Kinetics of flocculation and filtration 108
- 3.4.9 Effectiveness of chemicals in water technology 108
- 3.4.10 Precipitation-pH ranges of metals
- 3.4.11 Sewage treatment plant with precipitation of phosphate 110
- 3.4.12 Sludge formation and BOD 112
- 3.4.13 Oxygen consumption for metabolic processes 112
- 3.4.14 Elimination of phosphate 112
- 3.4.15 Nitrogen conversion during sewage treatment 114
- 3.4.16 Denitrification process 114
- 3.4.17 Waste water treatment in the metal-working (automobile) industry 116
- 3.4.18 Mechanical—biological—chemical sewage treatment plant with sludge treatment 116

4	Soil

4.1 Basic principles of soil science

- 4.1.1 The soil in the environment of the litho-, hydro- and atmosphere 118
- 4.1.2 Components of the litho-, bio-, hydro- and atmosphere 118
- 4.1.3 Interrelationships among types of rock 120
- 4.1.4 Types of rock 120
- 4.1.5 Soil granulation classes 122
- 4.1.6 Clod structures of soil 122
- 4.1.7 Soil horizons 124
- 4.1.8 The four physical states of soil 124

4.2 Physico- and biogeochemical processes

- 4.2.1 Soil functions 126
- 4.2.2 Soil components 126
- 4.2.3 Composition of arable land 126
- 4.2.4 Relationship between water tension and water content: pF graphs 128
- and water content: pF graphs 128
 4.2.5 Volumes of water, air and substances
- as a factor of soil type 128
 4.2.6 Oxygen and carbon dioxide content in the air in soil 128
- 4.2.7 Formation, transformation and decomposition of clay minerals 130
- 4.2.8 Arrangement of elements in two- and three-layered clay minerals 130
- 4.2.9 Structural types of silicates 130
- 4.2.10 Weathering of potash feldspar to form clay minerals 132
- 4.2.11 Clay minerals as polyfunctional exchangers 132
- 4.2.12 Diagenesis and humification 134
- 4.2.13 Soil and humus 134
- 4.2.14 Biogenesis of humic substances 138
- 4.2.15 Synthesis of humic substances 138
- 4.2.16 Structural model of a humic system 138
- 4.2.17 Dynamic processes in the soil 140

- 4.2.18 Weathering and gas exchange 140
- 4.3 Metals and acid rain
- 4.3.1 Potassium dynamics in the soil 142
- 4.3.2 Balancing out heavy metals in the upper soil layer 142
- 4.3.3 Soil pH and uptake of metals 142
- 4.3.4 Transport and activity of melting salts 144
- 4.3.5 Transport pathways of lead 144
- 4.3.6 Formation of lead emission in airborne particles 146
- 4.3.7 Frequency distribution of lead and cadmium in garden soils 146
- 4.3.8 Standardised lead levels in the A_P soil horizon near a non-ferrous heavy metal emitter 148
- 4.3.9 Accumulation of heavy metals 148
- 4.3.10 Behaviour of heavy metals in the soil 150
- 4.3.11 Mobilisation of heavy metals with various extraction agents 152
- 4.3.12 Deposition of acid rain 154
- 4.3.13 Influence of acid rain on the ecosystem of the forests 154
- 4.3.14 Processes in the soil 154
- 4.3.15 Acid rain as the cause of new-type forest decline 156
- 4.3.16 Effects of acid emissions on Cologne Cathedral 158

4.4 Organic contaminants

- 4.4.1 Example of an impacted industrial area 160
- 4.4.2 Behaviour of pollutants in the soil 162
- 4.4.3 Distribution of chlorinated hydrocarbons in soil atmosphere 162
- 4.4.4 Behaviour of pesticides in the soil 162
- 4.4.5 Amounts of measurable materials in impacted soil 164

96

4.4.6	Summation curves of oxygen consumption in soil contaminated	5.1.2	Basic principles of pollutant distribution and transformation 178
	with oil 164	5.1.3	Food chain and energy flow 180
4.5	Methods for soil remediation	5.1.4	Food pyramid 180
4.5.1	Emission pathways from a hazardous waste site 166	5.1.5	Food chain network 180
4.5.2	Soil remediation procedures 166	5.1.6	Materials properties and
4.5.3	Counterflow extraction with		environmental behaviour 182
7.5.5	solvents 168	5.1.7	Ecochemical materials properties 184
4.5.4	Thermal hazardous waste site remediation 168	5.1.8	Fundamental processes of material transfer between atmosphere and
4.5.5	Biological hazardous waste site		ocean 184
	remediation 170	5.2	General decomposition pathways
4.5.6	Remediation of contaminated groundwater and of soil atmosphere 170	5.2.1	Reaction enthalpies for decomposition reactions of biomass 186
4.6	Chemistry and technology in landfills	5.2.2	Reductive (anaerobic) reactions of xenobiotics 186
4.6.1	Construction of a landfill 172	5.2.3	Bacterial decomposition of aromatic
4.6.2	Sources of groundwater		compounds 188
	contamination risk near a landfill 172	5.2.4	Decomposition of aromatic nitro compounds 188
4.6.3	Development of the waste volume	5.3	Hydrocarbons: PAHs and PCBs
	and its composition 172	5.3.1	Formation of chlorinated compounds during combustion processes 190
4.6.4	Anaerobic decomposition processes in landfills 174	5.3.2	Decomposition of alkanes in the troposphere 190
4.6.5	Flow process of a waste fermentation plant 176	5.3.3	Mechanisms for PAH decomposition in prokaryotes and eukaryotes 192
4.6.6	Removal and use of landfill gas 176	5.3.4	Elimination pathways during the biochemical decomposition of PAHs in the soil 192
5	Environmental	5.3.5	Ways of distributing polychlorinated biphenyls (PCBs) 194
	Chemistry of Selected	5.3.6	Bioaccumulation of PCBs 194
	Xenobiotics and Heavy	5.3.7	Decomposition of PCBs 194
	Metals	5.4	Dibenzodioxins and dibenzofurans
5.1	Pathways of pollutants, food chains	5.4.1	Sources and pathways of dioxins 196
	and properties of materials	5.4.2	Contaminants in commercial
5.1.1	Pollutant pathways in	_	chlorophenol products 196
	ecosystems 178	5.4.3	Structural formulas and toxicity equivalents 198

6.1.2

6.1.3

Rapid-test procedures 212

Conceptional environmental

analysis 214

5.4.4	Formation and intake by humans 198	6.1.4	Risk assessment during examination
5.5	Pesticides and tensides		of hazardous waste sites 216
5.5.1	Behaviour of pesticides in the	6.1.5	Water studies near landfills 218
	soil 200	6.1.6	Strategies for the analysis of contaminated soils 220
5.5.2	Persistence of pesticides in soils 200	6.1.7	Luminescent bacteria test for
5.5.3	Biotic decomposition of ethene bisthiocarbamates 200	0.1./	activity-related analysis of contaminants 222
5.5.4	Decomposition of parathion in cattle 202	6.1.8	Outline for pesticide analysis in environmental samples 224
5.5.5	Microbial decomposition of parathion 202	6.1.9	Modern sample preparation for soils contaminated with PCBs 224
5.5.6	Decomposition of herbicides containing aromatic nitrogen 204	6.1.10	Analytical methods for hydrocarbons and PAHs in soils 226
5.5,7	Decomposition of straight-chained alkylbenzene sulphonates (tensides) 204	6.1.11	Sample processing and determination of pesticides 226
5.6	Heavy metals and their species	6.2	Ecotoxicological concepts for
5.6.1	•		evaluating risk
3.0.1	Heavy metal species in natural bodies of water 206	6.2.1	Flowchart for rapidly classifying chemicals 228
5.6.2	Concentration and activity 206	(22	•
5.6.3	Chromium species in tannery waste water 206	6.2.2	Developing an environmental risk profile 230
5.6.4	Mercury 'spider': applications and activity 208	6.2.3	Exposure analysis based on the 'Unit World' fugacity model 232
5.6.5	Environmental chemistry of	6.2.4	Evaluation of monitoring data 232
	mercury 208	6.2.5	Risk evaluation according to the E4 Chem model 234
5.6.6	Ecochemical reactions of arsenic 210	6.2.6	The EXTND submodel for exposure
5.6.7	Transformations of arsenic species in the ocean 210	0.2.0	analysis 234
		6.2.7	The OECD standard environmental model 234
6	Problem- and Activity-	6.2.8	Compartments and processes in an environment model 236
	Oriented Environmental	6.2.9	Activity analysis using a computer
	Analysis		study 236
6.1	Environmental analysis – strategies and concepts	Biblio	graphy 238
6.1.1	Mobile on-site analysis 212		

Index 240