CONTENTS ## 1. ALGEBRAIC AND TRANSCENDENTAL SYSTEMS | 1.1 Introduction 1.2 Matrices and Linear Systems 1.3 Gauss Elimination 1.4 Tridiagonal Systems 1.5 The Generalized Newton's Method 1.6 Remarks on the Generalized Newton's Method 1.7 Eigenvalues and Eigenvectors Exercises | 1
2
5
9
23
34
36
41 | |--|--| | 2. APPROXIMATION | | | 2.1 Introduction 2.2 Discrete Functions 2.3 Piecewise Linear Interpolation 2.4 Piecewise Parabolic Interpolation 2.5 Cubic Spline Interpolation 2.6 Lagrange Interpolation 2.7 Least Squares Exercises | 48
48
50
51
54
62
66
70 | | 3. APPROXIMATE INTEGRATION AND DIFFERENTIATION | | | 3.1 Introduction 3.2 The Trapezoidal Rule 3.3 Simpson's Rule 3.4 Romberg Integration 3.5 Remarks About Numerical Integration 3.6 Numerical Differentiation Exercises | 76
78
85
87
90
90 | | 4. APPROXIMATE SOLUTION OF INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS | | | 4.1 Introduction 4.2 Euler's Method *4.3 Convergence of Euler's Method 4.4 A Runge-Kutta Method 4.5 Higher Order Runge-Kutta Formulas 4.6 Kutta's Fourth-Order Method for a System of Two First-Order Equations 4.7 Kutta's Fourth-Order Formulas for Second-Order Differential Equations 4.8 The Method of Taylor Expansions | 100
102
105
112
117
119
120
123 | | viii | CONTENTS | |------|----------| | | | | 4.9 Instability *4.10 Approximation of Periodic Solutions of Differential Equations 4.11 Hints and Remarks Exercises | 126
133
136
137 | |---|--| | 5. APPROXIMATE SOLUTION OF BOUNDARY VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS | | | 5.1 Introduction 5.2 Central Difference Method for Linear Boundary Value Problems 5.3 Upwind Difference Method for Linear Boundary Value Problems 5.4 Numerical Solution of Mildly Nonlinear Boundary Value Problems *5.5 Convergence of Difference Methods for Boundary Value Problems *5.6 The Finite Element Method 5.7 Differential Eigenvalue Problems Exercises | 143
144
153
159
162
169
175 | | 6. ELLIPTIC EQUATIONS | | | 6.1 Introduction 6.2 Boundary Value Problems for the Laplace Equation 6.3 Approximate Solution of the Dirichlet Problem on a Rectangle 6.4 Approximate Solution of the Dirichlet Problem on a General Domain 6.5 The General Linear Elliptic Equation 6.6 Upwind Difference Method for General Linear Elliptic Equations *6.7 Theory for the Numerical Solution of Linear Boundary value Problems 6.8 Numerical Solution of Mildly Nonlinear Problems Exercises | 182
185
187
191
194
199
204
207
210 | | 7. PARABOLIC EQUATIONS | | | 7.1 Introduction 7.2 An Explicit Numerical Method for the Heat Equation 7.3 The General Linear Parabolic Equation 7.4 An Explicit Upwind Method 7.5 Numerical Solution of Mildly Nonlinear Problems *7.6 Convergence of Explicit Finite Difference Methods 7.7 Implicit Central Difference Method 7.8 Implicit Upwind Method 7.9 The Crank-Nicolson Method Exercises | 214
216
222
229
232
234
239
245
248
253 | | 8. Hyperbolic Equations | | | 8.1 Introduction 8.2 The Cauchy Problem | 257
259 | | CONTENTS | ix | |----------|----| | | _ | | 8.3 An Explicit Method for Initial-Boundary Problems 8.4 An Implicit Method for Initial-Boundary Problems 8.5 Mildly Nonlinear Problems 8.6 Hyperbolic Systems 8.7 The Method of Characteristics for Initial Value Problems 8.8 The Method of Courant, Isaacson and Rees 8.9 The Lax-Wendroff Method Exercises | 263
268
270
271
278
287
294
296 | |--|--| | *9. THE NAVIER-STOKES EQUATIONS | | | 9.1 Introduction 9.2 The Governing Dynamical Equations 9.3 The Finite Difference Equations 9.4 Pressure Approximation 9.5 Solution Algorithm 9.6 The Cavity Flow Problem 9.7 Stability of the Method Exercises | 301
301
302
307
309
314
320
323 | | ANSWERS TO SELECTED EXERCISES BIBLIOGRAPHY SUBJECT INDEX. | 324
332
337 |