Contents

Acknowledgments	ix
Preface	xi
Introduction: Why Cognitive Science Matters to Mathematics	1
Part I	
THE EMBODIMENT OF BASIC ARITHMETIC	
1 The Brain's Innate Arithmetic	15
2 A Brief Introduction to the Cognitive Science of the Embodied Min	d 27
3 Embodied Arithmetic: The Grounding Metaphors	50
4 Where Do the Laws of Arithmetic Come From?	77
Part II	
ALGEBRA, LOGIC, AND SETS	
5 Essence and Algebra	107
6 Boole's Metaphor: Classes and Symbolic Logic	121
7 Sets and Hypersets	140
Part III	
THE EMBODIMENT OF INFINITY	
8 The Basic Metaphor of Infinity	155
9 Real Numbers and Limits	181

VIII	Zο	NTE	IN	`S

		200
	Transfinite Numbers	208 223
11	Infinitesimals	223
	Part IV	
	BANNING SPACE AND MOTION: THE DISCRETIZATION PROGRAM THAT SHAPED MODERN MATHEMATICS	
12	Points and the Continuum	259
	Continuity for Numbers: The Triumph of Dedekind's Metaphors Calculus Without Space or Motion: Weierstrass's	292
	Metaphorical Masterpiece	306
	Le trou normand:	
	A CLASSIC PARADOX OF INFINITY	325
	Part V	
	IMPLICATIONS FOR THE PHILOSOPHY OF MATHEMATICS	
15	The Theory of Embodied Mathematics	337
16	The Philosophy of Embodied Mathematics	364
	Part VI	
	$e^{\pi i} + 1 = 0$	
	A CASE STUDY OF THE COGNITIVE STRUCTURE OF CLASSICAL MATHEMATICS	
Cas	se Study 1. Analytic Geometry and Trigonometry	383
Cas	se Study 2. What Is e?	399
	se Study 3. What Is i?	420
Cas	se Study 4. $e^{\pi i} + 1 = 0$ —How the Fundamental Ideas of	
	Classical Mathematics Fit Together	433
D of	ferences	453
Ind		433 473