CONTENT

PREFACE	III
CONTENT	VII
TABLES	IX
ILLUSTRATIONS	X
ABBREVIATIONS	XII
1 INTRODUCTION	1
1.1 SUPPORTING DECISIONS – THE TARGET OF THIS STUDY	1
1.2 THE STRUCTURE OF THIS STUDY	3
2 THE GLOBAL ECONOMY AT THE BEGINNING OF THE $21^{ m ST}$ CENTURY – THE SYSTEM	
2.1 What is "Globalization"?	8
2.2 INTEGRATED PRODUCTION NETWORKS OF MULTINATIONAL ENTERPRISES	10
2.3 THE "WORLD ASSEMBLY LINE" PARADIGM – THE REFERENTIAL FRAME FOR THE SYSTEM	12
2.4 THE KEY PREREQUISITE OF THE WORLD ASSEMBLY LINE – FLEXIBILITY	15
2.5 REGIONAL TRADE BLOCS – INTERLINKAGES BETWEEN COUNTRIES	
2.6 MEASURING PERFORMANCE WITH THE SHAREHOLDER VALUE APPROACH – A COMPANY'S	
COMPETITIVE POSITION	
2.7 SUMMARY FOR THE SYSTEM	28
3 DECISIONS FOR A WORLD ASSEMBLY LINE – THE DECISION VARIABLES X	31
3.1 CONFIGURING A WORLD ASSEMBLY LINE – STRATEGIC PRE-DECISIONS	32
3.2 COORDINATING A WORLD ASSEMBLY LINE – TACTICAL DECISIONS	
3.3 RUNNING A WORLD ASSEMBLY LINE - OPERATIVE DECISIONS	
3.4 SUMMARY FOR THE DECISION VARIABLES	47
4 RELEVANT CONSTITUENTS FOR MODELING THE SETTING OF A WORLD	
ASSEMBLY LINE – THE ENVIRONMENTAL PARAMETERS Y	49
4.1 LAWS AND CONTRACTS – THE LEGAL ENVIRONMENT	
4.2 Exchange Rates, Interest Rates and Inflation – The Financial Environment	6:
4.3 INFRASTRUCTURE AND TECHNICAL DIMENSIONS – THE PHYSICAL ENVIRONMENT	
4.4 SUMMARY FOR THE ENVIRONMENTAL PARAMETERS	8

5 MEASURING THE PERFORMANCE OF A WORLD ASSEMBLY LINE –	
THE DECISION CRITERION E	87
5.1 EVALUATING STRATEGIC, TACTICAL AND OPERATIVE DECISIONS – MEASURING THE	
PERFORMANCE OF A WORLD ASSEMBLY LINE	88
5.2 Traditional Ways of Evaluating Operative Decisions – Performance of Supply Chains	89
5.3 USING THE CASH FLOW TO EVALUATE OPERATIVE DECISIONS FOR SUPPLY CHAIN OPTIMIZATION	93
5.4 Additional Information about Consequences of Decisions – Diagnostic Variables	97
5.5 IMPORTANT FACTS THAT ARE NOT INCORPORATED IN THE DECISION CRITERION – IMPONDERABLES	101
5.6 SUMMARY FOR THE DECISION CRITERION	103
6 VALÉRIE – THE MODEL F	107
6.1 CRYPTIC SIGNS – AN OVERVIEW OF THE SYMBOLS USED BY VALÉRIE	108
6.2 "Maximize the Cash Flow" – Formulating the Objective Function and	
THE DIAGNOSTIC VARIABLES OF VALÉRIE	112
6.3 " BUT KEEP THE RESTRICTIONS IN MIND" – MODELING THE CONSTRAINTS OF VALÉRIE	115
6.4 "PRODUCE COMPREHENSION, NOT NUMBERS" – OPTIMIZING WORLD ASSEMBLY LINES WITH VALÉRIE	3.118
6.5 STUDIES DEALING WITH SIMILAR PROBLEMS - AN OVERVIEW ON LITERATURE	121
6.6 SUMMARY FOR THE MODEL	138
7 THE DAIMLERCHRYSLER WORLD ASSEMBLY LINE FOR COMMERCIAL .	
VEHICLE ENGINES – THE CASE STUDY	141
7.1 TESTING A REAL WORLD ASSEMBLY LINE – THE 1997 BASE CASE	142
7.2 Transforming Reality into VALérie's Logic – Fixing Parameters and Their Values	144
7.3 ANALYZING ENVIRONMENTAL SCENARIOS – COORDINATING THE WORLD ASSEMBLY LINE	150
7.4 ANALYZING STRATEGIC ALTERNATIVES – (RE)CONFIGURING THE WORLD ASSEMBLY LINE	157
7.5 ANALYZING "UNLIMITED CAPACITIES" – CREATING FLEXIBILITY FOR THE WORLD ASSEMBLY LINE	166
7.6 ANALYZING TRADITIONAL SUPPLY CHAIN OPTIMIZATION - RUNNING THE WORLD ASSEMBLY LINE	170
7.7 SUMMARY FOR THE CASE STUDY	172
8 SUMMARY	175
8.1 LESSONS LEARNED FOR DECISION SUPPORT FOR WORLD ASSEMBLY LINES	176
8.2 KEY RESULTS OF THE CASE STUDY AND FUTURE TASKS	180
REFERENCES	183

APPENDIX A: WORLD TRADE BLOCS – STATUS, MEMBERS AND RECENT DEVELOPMENTS UNTIL END OF 2001

APPENDIX B: THE BRIEF VERSION OF VALÉRIE

BIBLIOGRAPHY

TABLES

Table A: World trade blocs and councils	23
Table B: Main types of contracts, defined parameters and their duration	58
Table C: Hedging the risks of parameter changes of the legal environment	64
Table D: An example for strategic inventory management	75
Table E: Only configuring and coordination the WAL can adequately fight operating exposure	79
Table F: Parameters of air- and sea-freight (example)	80
Table G: Hedging against changes of physical parameters	83
Table H: Overview on hedging instruments/actions for changes in relevant parameters of the WAL	85
Table I: Advantages of structured valuation	96
Table J: Global cash flow matrix - before taxes and weighted with the share of capital (example)	119
Table K: Global bill of materials (example)	120
Table L: An overview on literature	136
Table M: Values for indices of the case study	145
Table N: List of parameters	146
Table O: Effects of a 50% fall in demand in various trade blocs	153
Table P: Effects of a 50% fall in demand for certain types of engines	154
Table Q: Effects of buying/selling DDC shares	159
Table R: Effects on value creation when introducing MB engines to NAFTA	160
Table S: Changing the configuration of the WAL by introducing new elements	162
Table T: New configurations of the WAL and the Asian/Brazilian Crisis of 1998	164
Table U: Optimizing the WAL in case of unlimited capacities	168

ILLUSTRATIONS

Illustration 1: The structure of the study	6
Illustration 2: Frame and canvas of the study	7
Illustration 3: Production sites of DaimlerChrysler for Commercial Vehicles in 1997	10
Illustration 4: The transportation matrix	11
Illustration 5: Commonly used capacities (example)	14
Illustration 6: Interest rate convergence in the EUR-zone	20
Illustration 7: Effects of trade bloc integration on macro-economic parameters	21
Illustration 8: World trade blocs	22
Illustration 9: Control of elements – borders of the MNE (example)	27
Illustration 10: The fixed canvas	29
Illustration 11: Putting the background colors on the canvas	31
Illustration 12: Compensation levels – total hourly compensation for manufacturing workers	
(wages plus supplementary benefits) in USD (1997)	33
Illustration 13: Compensation levels in USD (1998)	34
Illustration 14: Compensation levels in USD (1999)	35
Illustration 15: Compensation levels in USD (2000)	35
Illustration 16: Material flows between elements	41
Illustration 17: Typical supply chain in global logistics	43
Illustration 18: Concept of Progress Numbers	43
Illustration 19: Investment in inventory and delivery time requirements	45
Illustration 20: The decision variable of the WAL	48
Illustration 21: Composing the environment of VALérie	49
Illustration 22: Corporate tax rates of 1998 in %	56
Illustration 23: International terms of payment	60
Illustration 24: Incoterms	62
Illustration 25: The progress of the EUR in per cent and in USD/EUR	65
Illustration 26: The world's currency areas	66
Illustration 27: Financial risks to the MNE	67
Illustration 28: An overview on classical hedging instruments	68
Illustration 29: Levels for hedging against changes in financial parameter's values	68
Illustration 30: The operating exposure	71
Illustration 31: Development of the JPY vs. the USD	73
Illustration 32: Financial equilibrium relationships	76
Illustration 33: Determining environmental scenarios for the WAL	86
Illustration 34: A frame for the canvas makes a picture	87
Illustration 35: From proxy-criteria to structured valuation	95

Illustration 36: Hierarchy of diagnostic variables of the financial sphere	100
Illustration 37: The decision criterion links decisions and environment	105
Illustration 38: The model links decisions, environment and efficiency	107
Illustration 39: The syntax for material flows	108
Illustration 40: VALérie in the center of the study	139
Illustration 41: A case study fixes the WAL's portrait on the wall	141
Illustration 42: The integrated production network for truck/industrial engines of Mercedes-Benz's	
Commercial Vehicle Division (1997)	142
Illustration 43: Optimal material flows for the referential scenario (1997)	149
Illustration 44: Risk analysis for changing FX-rates (example)	149
Illustration 45: Results of tested environmental scenarios	151
Illustration 46: Changes in material flows because of a 50% fall in demand in various trade blocs	153
Illustration 47: Changes of the currency risk situation due to a 50% fall in demand for certain	
types of engines	154
Illustration 48: Changes in material flows because of a 50% fall in demand for certain types of engines	155
Illustration 49: Results for historical development of parameters' values	156
Illustration 50: Results for tested strategic alternatives	158
Illustration 51: Results for tested changes of other contractual parameters	159
Illustration 52: Currency risk linked to foreign direct investment in the US	160
Illustration 53: Related currency risk for substituting DDC engines by MB engines	161
Illustration 54: Optimal material flows for substituting DDC by MB engines	161
Illustration 55: Foreign exchange rate related risk of Asian investments (limited capacities)	162
Illustration 56: Foreign exchange rate related risk of Asian investments (unlimited capacities)	163
Illustration 57: Material flows for a WAL with Chinese dummy source	163
Illustration 58: Material flows for a WAL with Japanese dummy destination	164
Illustration 59: Optimal material flows for existing Japanese dummy for Asian Crisis	165
Illustration 60: Results for how flexibility assists value creation - unlimited capacities	
Illustration 61: Changing material flows for unlimited capacities	167
Illustration 62: How the shape of the WAL changes with the BRL/EUR exchange rate	168
Illustration 63: Risk deriving from changes in exchange rates (limited capacities)	169
Illustration 64: Risk deriving from changes in exchange rates (unlimited capacities)	169
Illustration 65: Influence of BRL/EUR rate on optimal material flows	169
Illustration 66: Results for tested classical logistical parameters	171
Illustration 67: Risk situation of the case study WAL due to environmental changes	
Illustration 68: Portfolio for trade blocs and countries	173
Illustration 69: The finished portrait of Value-Adding Logistics for a WAL	175