CONTENTS | | Preface ix | |-----------|---| | Chapter 1 | The Experiment, the Design, and the Analysis 1 1.1 INTRODUCTION TO EXPERIMENTAL DESIGN 1 1.2 THE EXPERIMENT 3 1.3 THE DESIGN 5 1.4 THE ANALYSIS 8 1.5 EXAMPLES 9 1.6 SUMMARY IN OUTLINE 16 1.7 FURTHER READING 17 PROBLEMS 17 | | Chapter 2 | Review of Statistical Inference 18 | | | 2.1 INTRODUCTION 18 2.2 ESTIMATION 20 2.3 TESTS OF HYPOTHESES 22 2.4 THE OPERATING CHARACTERISTIC CURVE 25 2.5 HOW LARGE A SAMPLE? 28 2.6 APPLICATION TO TESTS ON VARIANCES 29 2.7 APPLICATION TO TESTS ON MEANS 31 2.8 ASSESSING NORMALITY 37 2.9 APPLICATION TO TESTS ON PROPORTIONS 42 2.10 ANALYSIS OF EXPERIMENTS WITH SAS 44 2.11 FURTHER READING 50 Problems 50 | | Chapter 3 | Single-Factor Experiments with No Restrictions on Randomization 55 | | | 3.1 INTRODUCTION 55 3.2 ANALYSIS OF VARIANCE RATIONALE 58 3.3 AFTER ANOVA—WHAT? 64 3.4 TESTS ON MEANS 64 3.4.1 Orthogonal Contrasts 65 3.4.2 Multiple Comparison Procedures 71 3.5 CONFIDENCE LIMITS ON MEANS 75 | | | 3.7 CHECKING THE MODEL 83 | |-----------|--| | | 3.7.1 Plot the Residuals Against Other Variables 87 | | | 3.8 SAS PROGRAMS FOR ANOVA AND TESTS | | | AFTER ANOVA 89 | | | 3.9 SUMMARY 96 | | | 3.10 FURTHER READING 96 | | | PROBLEMS 97 | | Chapter 4 | Single-Factor Experiments: Randomized Block and Latin | | enapter i | Square Designs 103 | | | 4.1 INTRODUCTION 103 | | | 4.2 RANDOMIZED COMPLETE BLOCK DESIGN 105 | | | 4.3 ANOVA RATIONALE 110 | | | 4.4 MISSING VALUES 111 | | | 4.4.1 Computer Analysis with Missing Values 113 | | | 4.5 LATIN SQUARES 114 | | | 4.6 INTERPRETATIONS 116 | | | 4.7 ASSESSING THE MODEL 117 | | | 4.8 GRAECO-LATIN SQUARES 120 | | | 4.9 EXTENSIONS 121 | | | 4.10 SAS PROGRAMS FOR RANDOMIZED BLOCKS AND | | | LATIN SQUARES 121 | | | 4.11 SUMMARY 125 | | | 4.12 FURTHER READING 125 | | | PROBLEMS 126 | | Chapter 5 | Factorial Experiments 133 | | | 5.1 INTRODUCTION 133 | | | 5.2 FACTORIAL EXPERIMENTS: AN EXAMPLE 138 | | | 5.3 INTERPRETATIONS 142 | | | 5.4 THE MODEL AND ITS ASSESSMENT 144 | | | 5.5 ANOVA RATIONALE 146 | | | 5.6 ONE OBSERVATION PER TREATMENT 151 | | | 5.7 SAS PROGRAMS FOR FACTORIAL EXPERIMENTS | | | 152 | | | 5.8 SUMMARY 157 | | | 5.9 FURTHER READING 157 | | | PROBLEMS 158 | | Chapter 6 | Fixed, Random, and Mixed Models 168 | | | 6.1 INTRODUCTION 168 | | | 6.2 SINGLE-FACTOR MODELS 169 | | | 6.3 TWO-FACTOR MODELS 170 | | | 6.4 EMS RULES 172 | | | 6.5 EMS DERIVATIONS 175 | 3.6 COMPONENTS OF VARIANCE 77 | | | THE PSEUDO-F TEST 178 EXPECTED MEAN SQUARES VIA STATISTICAL COMPUTING PACKAGES 180 | |-----------|---|--| | | 6.8 | REMARKS 182 | | | | REPEATABILITY AND REPRODUCIBILITY FOR A | | | 6.10 | MEASUREMENT SYSTEM 183 SAS PROGRAMS FOR RANDOM AND | | | 6.11 | MIXED MODELS 184 FURTHER READING 186 | | | | PROBLEMS 186 | | Chapter 7 | Neste | d and Nested-Factorial Experiments 190 | | | 7.1 | | | | 7.2 | NESTED EXPERIMENTS 190 | | | | ANOVA RATIONALE 197 | | | | NESTED-FACTORIAL EXPERIMENTS 198 | | | 7.5 | REPEATED-MEASURES DESIGN AND | | | | NESTED-FACTORIAL EXPERIMENTS 203 | | | 7.6 | SAS PROGRAMS FOR NESTED AND | | | | NESTED-FACTORIAL EXPERIMENTS 208 | | | 7.7 | SUMMARY 211 | | | 7.8 | FURTHER READING 212 | | | | PROBLEMS 212 | | Chapter 8 | Exper | iments of Two or More Factors: Restrictions | | • | | ndomization 222 | | | | | | | 8.1 | INTRODUCTION 222 | | | | INTRODUCTION 222 FACTORIAL EXPERIMENT IN A RANDOMIZED | | | 8.1
8.2 | FACTORIAL EXPERIMENT IN A RANDOMIZED | | | 8.2 | FACTORIAL EXPERIMENT IN A RANDOMIZED BLOCK DESIGN 222 | | | | FACTORIAL EXPERIMENT IN A RANDOMIZED BLOCK DESIGN 222 FACTORIAL EXPERIMENT IN A LATIN | | | 8.2
8.3 | FACTORIAL EXPERIMENT IN A RANDOMIZED BLOCK DESIGN 222 | | | 8.2
8.3
8.4 | FACTORIAL EXPERIMENT IN A RANDOMIZED BLOCK DESIGN 222 FACTORIAL EXPERIMENT IN A LATIN SQUARE DESIGN 228 REMARKS 229 | | | 8.2
8.3
8.4 | FACTORIAL EXPERIMENT IN A RANDOMIZED BLOCK DESIGN 222 FACTORIAL EXPERIMENT IN A LATIN SQUARE DESIGN 228 REMARKS 229 SAS PROGRAMS 230 | | | 8.2
8.3
8.4
8.5 | FACTORIAL EXPERIMENT IN A RANDOMIZED BLOCK DESIGN 222 FACTORIAL EXPERIMENT IN A LATIN SQUARE DESIGN 228 REMARKS 229 SAS PROGRAMS 230 | | Chapter 9 | 8.2
8.3
8.4
8.5
8.6
2 ^f Fac | FACTORIAL EXPERIMENT IN A RANDOMIZED BLOCK DESIGN 222 FACTORIAL EXPERIMENT IN A LATIN SQUARE DESIGN 228 REMARKS 229 SAS PROGRAMS 230 SUMMARY 232 PROBLEMS 233 | | Chapter 9 | 8.2
8.3
8.4
8.5
8.6
2 ^f Fac | FACTORIAL EXPERIMENT IN A RANDOMIZED BLOCK DESIGN 222 FACTORIAL EXPERIMENT IN A LATIN SQUARE DESIGN 228 REMARKS 229 SAS PROGRAMS 230 SUMMARY 232 PROBLEMS 233 Etorial Experiments 239 INTRODUCTION 239 | | Chapter 9 | 8.2
8.3
8.4
8.5
8.6
2^f Fac
9.1
9.2 | FACTORIAL EXPERIMENT IN A RANDOMIZED BLOCK DESIGN 222 FACTORIAL EXPERIMENT IN A LATIN SQUARE DESIGN 228 REMARKS 229 SAS PROGRAMS 230 SUMMARY 232 PROBLEMS 233 Etorial Experiments 239 INTRODUCTION 239 22 FACTORIAL 239 | | Chapter 9 | 8.2
8.3
8.4
8.5
8.6
2^f Fac
9.1
9.2
9.3 | FACTORIAL EXPERIMENT IN A RANDOMIZED BLOCK DESIGN 222 FACTORIAL EXPERIMENT IN A LATIN SQUARE DESIGN 228 REMARKS 229 SAS PROGRAMS 230 SUMMARY 232 PROBLEMS 233 Etorial Experiments 239 INTRODUCTION 239 22 FACTORIAL 239 23 FACTORIAL 246 | | Chapter 9 | 8.2
8.3
8.4
8.5
8.6
2^f Fac
9.1
9.2
9.3
9.4 | FACTORIAL EXPERIMENT IN A RANDOMIZED BLOCK DESIGN 222 FACTORIAL EXPERIMENT IN A LATIN SQUARE DESIGN 228 REMARKS 229 SAS PROGRAMS 230 SUMMARY 232 PROBLEMS 233 Etorial Experiments 239 INTRODUCTION 239 22 FACTORIAL 239 23 FACTORIAL 246 2f REMARKS 250 | | Chapter 9 | 8.2
8.3
8.4
8.5
8.6
2 Fac
9.1
9.2
9.3
9.4
9.5 | FACTORIAL EXPERIMENT IN A RANDOMIZED BLOCK DESIGN 222 FACTORIAL EXPERIMENT IN A LATIN SQUARE DESIGN 228 REMARKS 229 SAS PROGRAMS 230 SUMMARY 232 PROBLEMS 233 Etorial Experiments 239 INTRODUCTION 239 2² FACTORIAL 239 2³ FACTORIAL 246 2f REMARKS 250 THE YATES METHOD 251 | | Chapter 9 | 8.2
8.3
8.4
8.5
8.6
2^f Fac
9.1
9.2
9.3
9.4
9.5
9.6 | FACTORIAL EXPERIMENT IN A RANDOMIZED BLOCK DESIGN 222 FACTORIAL EXPERIMENT IN A LATIN SQUARE DESIGN 228 REMARKS 229 SAS PROGRAMS 230 SUMMARY 232 PROBLEMS 233 Etorial Experiments 239 INTRODUCTION 239 2° FACTORIAL 239 2° FACTORIAL 246 2° REMARKS 250 THE YATES METHOD 251 ANALYSIS OF 2° FACTORIALS WHEN n = 1 253 | | Chapter 9 | 8.2
8.3
8.4
8.5
8.6
2f Factors 9.1
9.2
9.3
9.4
9.5
9.6
9.7 | FACTORIAL EXPERIMENT IN A RANDOMIZED BLOCK DESIGN 222 FACTORIAL EXPERIMENT IN A LATIN SQUARE DESIGN 228 REMARKS 229 SAS PROGRAMS 230 SUMMARY 232 PROBLEMS 233 Etorial Experiments 239 INTRODUCTION 239 2² FACTORIAL 239 2³ FACTORIAL 246 2f REMARKS 250 THE YATES METHOD 251 ANALYSIS OF 2f FACTORIALS WHEN n = 1 253 SOME COMMENTS ABOUT COMPUTER USE 259 | | Chapter 9 | 8.2
8.3
8.4
8.5
8.6
2^f Fac
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8 | FACTORIAL EXPERIMENT IN A RANDOMIZED BLOCK DESIGN 222 FACTORIAL EXPERIMENT IN A LATIN SQUARE DESIGN 228 REMARKS 229 SAS PROGRAMS 230 SUMMARY 232 PROBLEMS 233 Ctorial Experiments 239 INTRODUCTION 239 2² FACTORIAL 239 2³ FACTORIAL 246 2f REMARKS 250 THE YATES METHOD 251 ANALYSIS OF 2f FACTORIALS WHEN n = 1 253 SOME COMMENTS ABOUT COMPUTER USE 258 SUMMARY 257 | | Chapter 9 | 8.2
8.3
8.4
8.5
8.6
2^f Fac
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8 | FACTORIAL EXPERIMENT IN A RANDOMIZED BLOCK DESIGN 222 FACTORIAL EXPERIMENT IN A LATIN SQUARE DESIGN 228 REMARKS 229 SAS PROGRAMS 230 SUMMARY 232 PROBLEMS 233 Etorial Experiments 239 INTRODUCTION 239 2² FACTORIAL 239 2³ FACTORIAL 246 2f REMARKS 250 THE YATES METHOD 251 ANALYSIS OF 2f FACTORIALS WHEN n = 1 253 SOME COMMENTS ABOUT COMPUTER USE 255 SUMMARY 257 FURTHER READING 257 | | Chapter 9 | 8.2
8.3
8.4
8.5
8.6
2^f Fac
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8 | FACTORIAL EXPERIMENT IN A RANDOMIZED BLOCK DESIGN 222 FACTORIAL EXPERIMENT IN A LATIN SQUARE DESIGN 228 REMARKS 229 SAS PROGRAMS 230 SUMMARY 232 PROBLEMS 233 Ctorial Experiments 239 INTRODUCTION 239 2² FACTORIAL 239 2³ FACTORIAL 246 2f REMARKS 250 THE YATES METHOD 251 ANALYSIS OF 2f FACTORIALS WHEN n = 1 253 SOME COMMENTS ABOUT COMPUTER USE 258 SUMMARY 257 | | Chapter 10 | 3 ^f Factorial Experiments 268 | | | |------------|---|--|--| | | 10.1 INTRODUCTION 268 | | | | | 10.2 3 ² FACTORIAL 269 | | | | | 10.3 3 ³ FACTORIAL 280 | | | | | 10.4 COMPUTER PROGRAMS 287 | | | | | 10.5 SUMMARY 287 | | | | _ | PROBLEMS 288 | | | | Chapter 11 | Factorial Experiment: Split-Plot Design 292 | | | | | 11.1 INTRODUCTION 292 | | | | | 11.2 A SPLIT-PLOT DESIGN 293 | | | | | 11.3 A SPLIT-SPLIT-PLOT DESIGN 300 | | | | | 11.4 USING SAS TO ANALYZE A SPLIT-PLOT | | | | | EXPERIMENT 304 | | | | | 11.5 SUMMARY 306 | | | | | 11.6 FURTHER READING 306 | | | | <i>c</i> l | PROBLEMS 306 | | | | Chapter 12 | Factorial Experiment: Confounding in Blocks 311 | | | | | 12.1 INTRODUCTION 311 | | | | | 12.2 CONFOUNDING SYSTEMS 313 | | | | | 12.3 BLOCK CONFOUNDING, NO REPLICATION 316 | | | | | 12.4 BLOCK CONFOUNDING WITH REPLICATION 322 | | | | | 12.4.1 Complete Confounding 323 | | | | | 12.4.2 Partial Confounding 325 | | | | | 12.5 CONFOUNDING IN 3 ^f FACTORIALS 327 | | | | | 12.6 SAS PROGAMS 332 | | | | | 12.7 SUMMARY 335
12.8 FURTHER READING 335 | | | | | PROBLEMS 335 | | | | Chanter 13 | Fractional Replication 340 | | | | Chapter 13 | · · · · · · · · · · · · · · · · · · · | | | | | 13.1 INTRODUCTION 340
13.2 ALIASES 341 | | | | | 13.3 2 ^f FRACTIONAL REPLICATIONS 344 | | | | | 13.3.1 The Yates Method with 2^{f-k} Fractional Factorials 349 | | | | | 13.3.2 Fractional Replicates in Blocks 349 | | | | | 13.4 PLACKETT-BURMAN DESIGNS 350 | | | | | 13.5 DESIGN RESOLUTION 354 | | | | | 13.6 3 ^{f-k} FRACTIONAL FACTORIALS 358 | | | | | 13.7 SAS PROGRAMS 362 | | | | | 13.8 SUMMARY 363 | | | | | 13.9 FURTHER READING 364 | | | | | PROBLEMS 364 | | | | Chapter 14 | The Taguchi Approach to the Design | | | | - | of Experiments 370 | | | | | 14.1 INTRODUCTION 370 | | | | | 14.6
14.7
14.8
14.9 | THE $L_4(2^3)$ ORTHOGONAL ARRAY 371
OUTER ARRAYS 376
SIGNAL-TO-NOISE RATIO 378
THE $L_8(2^7)$ ORTHOGONAL ARRAY 380
THE $L_{16}(2^{15})$ ORTHOGONAL ARRAY 387
THE $L_9(3^4)$ ORTHOGONAL ARRAY 389
SOME OTHER TAGUCHI DESIGNS 396
SUMMARY 397
FURTHER READING 398
PROBLEMS 399 | |------------|--|---| | Chapter 15 | Regre | ession 403 | | | 15.1 | INTRODUCTION 403 LINEAR REGRESSION 403 15.2.1 The Simple Linear Model 405 15.2.2 The Least Squares Line 406 15.2.3 Departure from the Linear Model: A Lack of Fit Test 410 15.2.4 The Use of Equispaced Levels 413 | | | 15.3 | CURVILINEAR REGRESSION 414 15.3.1 Departure from the Quadratic Model: A Lack of Fit Test 417 15.3.2 Two Factors: One Qualitative and One Quantitative 419 | | | 15.4
15.5 | | | | 15.6
15.7 | SUMMARY 431 FURTHER READING 432 PROBLEMS 432 | | Chapter 16 | Misce | llaneous Topics 442 | | | 16.1
16.2 | INTRODUCTION 442
COVARIANCE ANALYSIS 442 | | | | 16.2.1 Covariance Analysis by Example 443 16.2.2 The Assumptions of Covariance Analysis 449 16.2.3 Covariance Analysis Using SAS 452 | | | 16.3
16.4
16.5
16.6
16.7
16.8 | RESPONSE SURFACE EXPERIMENTATION 455 EVOLUTIONARY OPERATION (EVOP) 467 ANALYSIS OF ATTRIBUTE DATA 476 RANDOMIZED INCOMPLETE BLOCKS: RESTRICTION ON EXPERIMENTATION 478 YOUDEN SQUARES 484 FURTHER READING 487 | | | 10.0 | PROBLEMS 488 | | | | | | Summary and Special Problems 493 | | | | | |----------------------------------|---|--|--|--| | Glossary of Terms 499 | | | | | | References 505 | | | | | | Statistical Tables 507 | | | | | | Table A | Areas Under the Normal Curve 507 | | | | | Table B | Student's <i>t</i> Distribution 509 | | | | | Table C | Cumulative Chi-Square Distribution 510 | | | | | Table D | Cumulative <i>F</i> Distribution 511 | | | | | Table E.1 | Upper 5% of Studentized Range q 521 | | | | | Table E.2 | Upper 1% of Studentized Range q 522 | | | | | Table F | Coefficients of Orthogonal Polynomials 523 | | | | | Answers | to Selected Problems 525 | | | | | Indian F | 'FA | | | | Index 559