CONTENTS

1-1	Introd	uction	
1-2	Glossa	ry of Terms	
1-3	Furthe	r Consideration of Digital Communication Systen	n
	Design	_	•
	1-3.1	General Considerations 5	
	1-3.2	Error-Free Capacity of a Communication System	7
	1-3.3	The Source in a Digital Communication System	9
	1-3.4	· · · · · · · · · · · · · · · · · · ·	
	1-3.5	The Channel 23	
		The Receiver 36	
-4	Prologi	ue	
	Referen		
	Probler	ms	
SIG	NALS #	AND SYSTEMS: OVERVIEW	
2-1	Review	of Signal and Linear System Theory	
	2-1.1	Introduction 43	
	2-1.2	Classification of Signals 43	

		2-1.3	Fundamental Properties of Systems 45	
		2-1.4	Complex Exponentials as Eigenfunctions for a Fixed,	
			Linear System; Transfer Function 47	
		2-1.5	Orthogonal Function Series 48	
		2-1.6	Complex Exponential Fourier Series 50	
		2-1.7	Fourier Transform 53	
		2-1.8	Signal Spectra 57	
		2-1.9	Energy Relationships 58	
		2-1.10	System Analysis 61	
		2-1.11	Other Applications of the Fourier Transform 64	
	2-2	Comple	x Envelope Representation of Signals and Systems	67
		2-2.1	Narrowband Signals 67	
		2-2.2	Narrowband Signals and Narrowband Systems 69	
	2-3	Signal I	Distortion and Filtering	72
		2-3.1	Distortionless Transmission and Ideal Filters 73	
		2-3.2	Group and Phase Delay 73	
		2-3.3	Nonlinear Systems and Nonlinear Distortion 81	0.6
	2-4	Practic	al Filter Types and Characteristics	86
		Referer		100
		Probler	ns	101
eleste edit scooli	PEF	RFORM	ANCE CHARACTERIZATION OF ATA TRANSMISSION SYSTEMS	105
	Did	HIALD	AIA INANGIMOOIGIL GI GI E.M.G	
	3-1	Introdu	action	105
	3-2	Detecti	on of Binary Signals in White, Gaussian Noise	106
		3-2.1	Receiver Structure and Analysis 106	
			The Matched Filter 109	
		3-2.2	THE Materies I was	
		3-2.2 3-2.3	Application of the Matched Filter to Binary Data	
		3-2.3	Application of the Matched Filter to Binary Data Detection 112	
			Application of the Matched Filter to Binary Data Detection 112 Correlator Realization of Matched Filter	
	2.2	3-2.3 3-2.4	Application of the Matched Filter to Binary Data Detection 112 Correlator Realization of Matched Filter Receivers 115	
	3-3	3-2.3 3-2.4 Quadr	Application of the Matched Filter to Binary Data Detection 112 Correlator Realization of Matched Filter Receivers 115 ature-Multiplexed Signaling Schemes: QPSK, OQPSK,	117
	3-3	3-2.3 3-2.4 Quadr and M	Application of the Matched Filter to Binary Data Detection 112 Correlator Realization of Matched Filter Receivers 115 ature-Multiplexed Signaling Schemes: QPSK, OQPSK, SK	117
	3-3	3-2.3 3-2.4 Quadr and M 3-3.1	Application of the Matched Filter to Binary Data Detection 112 Correlator Realization of Matched Filter Receivers 115 ature-Multiplexed Signaling Schemes: QPSK, OQPSK, SK Ouadrature Multiplexing 117	117
	3-3	3-2.3 3-2.4 Quadr and M	Application of the Matched Filter to Binary Data Detection 112 Correlator Realization of Matched Filter Receivers 115 ature-Multiplexed Signaling Schemes: QPSK, OQPSK, SK Quadrature Multiplexing 117 Quadrature and Offset-Quadrature Phase-Shift	117
	3-3	3-2.3 3-2.4 Quadr and M 3-3.1 3-3.2	Application of the Matched Filter to Binary Data Detection 112 Correlator Realization of Matched Filter Receivers 115 ature-Multiplexed Signaling Schemes: QPSK, OQPSK, SK Quadrature Multiplexing 117 Quadrature and Offset-Quadrature Phase-Shift Keying 118	117
	3-3	3-2.3 3-2.4 Quadr and M 3-3.1 3-3.2	Application of the Matched Filter to Binary Data Detection 112 Correlator Realization of Matched Filter Receivers 115 ature-Multiplexed Signaling Schemes: QPSK, OQPSK, SK Quadrature Multiplexing 117 Quadrature and Offset-Quadrature Phase-Shift Keying 118 Minimum-Shift Keying 120	117
	3-3	3-2.3 3-2.4 Quadr and M 3-3.1 3-3.2	Application of the Matched Filter to Binary Data Detection 112 Correlator Realization of Matched Filter Receivers 115 ature-Multiplexed Signaling Schemes: QPSK, OQPSK, SK Quadrature Multiplexing 117 Quadrature and Offset-Quadrature Phase-Shift Keying 118 Minimum-Shift Keying 120 Performance of Digital Quadrature Modulation	117
		3-2.3 3-2.4 Quadr and M 3-3.1 3-3.2 3-3.3 3-3.4	Application of the Matched Filter to Binary Data Detection 112 Correlator Realization of Matched Filter Receivers 115 ature-Multiplexed Signaling Schemes: QPSK, OQPSK, SK Quadrature Multiplexing 117 Quadrature and Offset-Quadrature Phase-Shift Keying 118 Minimum-Shift Keying 120 Performance of Digital Quadrature Modulation Systems 120	117
	3-4	3-2.3 3-2.4 Quadr and M 3-3.1 3-3.2 3-3.3 3-3.4	Application of the Matched Filter to Binary Data Detection 112 Correlator Realization of Matched Filter Receivers 115 ature-Multiplexed Signaling Schemes: QPSK, OQPSK, SK Quadrature Multiplexing 117 Quadrature and Offset-Quadrature Phase-Shift Keying 118 Minimum-Shift Keying 120 Performance of Digital Quadrature Modulation Systems 120 Spectra for BPSK, QPSK, OQPSK, and MSK	
		3-2.3 3-2.4 Quadrand M 3-3.1 3-3.2 3-3.3 3-3.4 Power Serial	Application of the Matched Filter to Binary Data Detection 112 Correlator Realization of Matched Filter Receivers 115 ature-Multiplexed Signaling Schemes: QPSK, OQPSK, SK Quadrature Multiplexing 117 Quadrature and Offset-Quadrature Phase-Shift Keying 118 Minimum-Shift Keying 120 Performance of Digital Quadrature Modulation Systems 120 Spectra for BPSK, QPSK, OQPSK, and MSK Modulation and Detection of MSK	124
	3-4	3-2.3 3-2.4 Quadrand M 3-3.1 3-3.2 3-3.3 3-3.4 Power Serial 3-5.1	Application of the Matched Filter to Binary Data Detection 112 Correlator Realization of Matched Filter Receivers 115 ature-Multiplexed Signaling Schemes: QPSK, OQPSK, SK Quadrature Multiplexing 117 Quadrature and Offset-Quadrature Phase-Shift Keying 118 Minimum-Shift Keying 120 Performance of Digital Quadrature Modulation Systems 120 Spectra for BPSK, QPSK, OQPSK, and MSK Modulation and Detection of MSK Serial Approach 129	124
	3-4 3-5	3-2.3 3-2.4 Quadr and M 3-3.1 3-3.2 3-3.3 3-3.4 Power Serial 3-5.1 3-5.2	Application of the Matched Filter to Binary Data Detection 112 Correlator Realization of Matched Filter Receivers 115 ature-Multiplexed Signaling Schemes: QPSK, OQPSK, SK Quadrature Multiplexing 117 Quadrature and Offset-Quadrature Phase-Shift Keying 118 Minimum-Shift Keying 120 Performance of Digital Quadrature Modulation Systems 120 Spectra for BPSK, QPSK, OQPSK, and MSK Modulation and Detection of MSK Serial Approach 129 Terminology and Trellis Diagrams 130	124
	3-4	3-2.3 3-2.4 Quadr and M 3-3.1 3-3.2 3-3.3 3-3.4 Power Serial 3-5.1 3-5.2	Application of the Matched Filter to Binary Data Detection 112 Correlator Realization of Matched Filter Receivers 115 ature-Multiplexed Signaling Schemes: QPSK, OQPSK, SK Quadrature Multiplexing 117 Quadrature and Offset-Quadrature Phase-Shift Keying 118 Minimum-Shift Keying 120 Performance of Digital Quadrature Modulation Systems 120 Spectra for BPSK, QPSK, OQPSK, and MSK Modulation and Detection of MSK Serial Approach 129 Terminology and Trellis Diagrams 130 ing Through Bandlimited Channels System Model 133	124 128
	3-4 3-5	3-2.3 3-2.4 Quadrand M 3-3.1 3-3.2 3-3.3 3-3.4 Power Serial 3-5.1 3-5.2 Signal	Application of the Matched Filter to Binary Data Detection 112 Correlator Realization of Matched Filter Receivers 115 ature-Multiplexed Signaling Schemes: QPSK, OQPSK, SK Quadrature Multiplexing 117 Quadrature and Offset-Quadrature Phase-Shift Keying 118 Minimum-Shift Keying 120 Performance of Digital Quadrature Modulation Systems 120 Spectra for BPSK, QPSK, OQPSK, and MSK Modulation and Detection of MSK Serial Approach 129 Terminology and Trellis Diagrams 130 ing Through Bandlimited Channels	124 128
	3-4 3-5	3-2.3 3-2.4 Quadrand M 3-3.1 3-3.2 3-3.3 3-3.4 Power Serial 3-5.1 3-5.2 Signal 3-6.1	Application of the Matched Filter to Binary Data Detection 112 Correlator Realization of Matched Filter Receivers 115 ature-Multiplexed Signaling Schemes: QPSK, OQPSK, SK Quadrature Multiplexing 117 Quadrature and Offset-Quadrature Phase-Shift Keying 118 Minimum-Shift Keying 120 Performance of Digital Quadrature Modulation Systems 120 Spectra for BPSK, QPSK, OQPSK, and MSK Modulation and Detection of MSK Serial Approach 129 Terminology and Trellis Diagrams 130 ing Through Bandlimited Channels System Model 133	124 128

CONTENTS

		3-6.4	Quadrature Bandpass Systems and Multiple Amplitude	
		265	Systems 141	
		3-6.5	Shaped Transmitted Signal Spectra 142	
	2.5	3-6.6	Duobinary Signaling 143	
	3-7	The U	se of Eye Diagrams for System Characterization	146
	3-8		zation in Digital Data Transmission Systems	147
		3-8.1	Zero Forcing Equalizers 147	
		3-8.2	LMS Equalizer Application 151	
		3-8.3	Adaptive Weight Adjustment 155	
	•	3-8.4	Other Equalizer Structures 157	
	3-9		dations due to Realization Imperfections in Digital	
			ation Systems	158
		3-9.1	Phase and Amplitude Imbalance in BPSK 159	
		3-9.2	Phase and Amplitude Unbalance in QPSK Modulation 160	
		3-9.3	Power Loss due to Filtering the Modulated	
		5-7.5	Signal 162	
		3-9.4	Imperfect Phase Reference at a Coherent	
			Demodulator 162	
		3-9.5	Degradation due to a Nonideal Detection Filter 166	
		3-9.6	Degradation due to Predetection Filtering 169	
		3-9.7	Degradation due to Transmitter, or Channel Filtering;	
		200	Non-Matched Detector 170	
		3-9.8	Degradation due to Bit Synchronizer Timing Error 171	
			Little 1/1	
	3-10		ator Structures for QPSK, OQPSK, and MSK	174
	3-10 3-11			174 177
			ator Structures for QPSK, OQPSK, and MSK ope Functions for BPSK, QPSK, OQPSK, and MSK	
		Envelo	ator Structures for QPSK, OQPSK, and MSK ope Functions for BPSK, QPSK, OQPSK, and MSK nces	177
	3-11	Envelo Refere Proble	ator Structures for QPSK, OQPSK, and MSK ope Functions for BPSK, QPSK, OQPSK, and MSK nces ms	177 179
L.	3-11 SIGI	Envelo Refere Proble	ator Structures for QPSK, OQPSK, and MSK ope Functions for BPSK, QPSK, OQPSK, and MSK nces ms PACE METHODS IN	177 179 180
£4	3-11 SIGI	Envelo Refere Proble NAL-SI	ator Structures for QPSK, OQPSK, and MSK ope Functions for BPSK, QPSK, OQPSK, and MSK nces ms PACE METHODS IN ATA TRANSMISSION	177 179 180
4	3-11 SIGI DIGI	Envelo Refere Proble NAL-SI TAL D	ator Structures for QPSK, OQPSK, and MSK ope Functions for BPSK, QPSK, OQPSK, and MSK nces ms PACE METHODS IN ATA TRANSMISSION uction	177 179 180 184 184
L.	3-11 SIGI	Envelo Refere Proble NAL-Si TAL D Introde Optime	ator Structures for QPSK, OQPSK, and MSK ope Functions for BPSK, QPSK, OQPSK, and MSK nces ms PACE METHODS IN ATA TRANSMISSION uction um Receiver Principles in Terms of Vector Spaces	177 179 180
L.	3-11 SIGI DIGI	Envelo Refere Proble NAL-SI TAL D Introde Optime 4-2.1	ator Structures for QPSK, OQPSK, and MSK ope Functions for BPSK, QPSK, OQPSK, and MSK nces ms PACE METHODS IN ATA TRANSMISSION uction um Receiver Principles in Terms of Vector Spaces Maximum a Posteriori Detectors 186	177 179 180 184 184
	3-11 SIGI DIGI	Refere Proble NAL-SI TAL D Introd Optime 4-2.1 4-2.2	ator Structures for QPSK, OQPSK, and MSK ope Functions for BPSK, QPSK, OQPSK, and MSK nces ms PACE METHODS IN ATA TRANSMISSION uction um Receiver Principles in Terms of Vector Spaces Maximum a Posteriori Detectors 186 Vector-Space Representation of Signals 188	177 179 180 184 184
	3-11 SIGI DIGI	Refere Proble NAL-SI TAL D Introde Optime 4-2.1 4-2.2 4-2.3	ator Structures for QPSK, OQPSK, and MSK ope Functions for BPSK, QPSK, OQPSK, and MSK nces ms PACE METHODS IN ATA TRANSMISSION uction um Receiver Principles in Terms of Vector Spaces Maximum a Posteriori Detectors 186 Vector-Space Representation of Signals 188 MAP Detectors in Terms of Signal Spaces 192	177 179 180 184 184
	3-11 SIGI DIGI 4-1 4-2	Refere Proble NAL-SI TAL D Introde Optime 4-2.1 4-2.2 4-2.3 4-2.4	ator Structures for QPSK, OQPSK, and MSK ope Functions for BPSK, QPSK, OQPSK, and MSK nces ms PACE METHODS IN ATA TRANSMISSION uction um Receiver Principles in Terms of Vector Spaces Maximum a Posteriori Detectors 186 Vector-Space Representation of Signals 188 MAP Detectors in Terms of Signal Spaces 192 Performance Calculations for MAP Receivers 195	177 179 180 184 184 186
Landy.	3-11 SIGI DIGI	Refere Proble NAL-Si TAL D Introde Optime 4-2.1 4-2.2 4-2.3 4-2.4 Perform	ator Structures for QPSK, OQPSK, and MSK ope Functions for BPSK, QPSK, OQPSK, and MSK nces ms PACE METHODS IN ATA TRANSMISSION uction um Receiver Principles in Terms of Vector Spaces Maximum a Posteriori Detectors 186 Vector-Space Representation of Signals 188 MAP Detectors in Terms of Signal Spaces 192 Performance Calculations for MAP Receivers 195 mance Analysis of Coherent Digital Signaling Schemes	177 179 180 184 184
4	3-11 SIGI DIGI 4-1 4-2	Refere Proble NAL-SI TAL D Introde Optime 4-2.1 4-2.2 4-2.3 4-2.4 Perfore 4-3.1	ator Structures for QPSK, OQPSK, and MSK ope Functions for BPSK, QPSK, OQPSK, and MSK nces ms PACE METHODS IN ATA TRANSMISSION uction um Receiver Principles in Terms of Vector Spaces Maximum a Posteriori Detectors 186 Vector-Space Representation of Signals 188 MAP Detectors in Terms of Signal Spaces 192 Performance Calculations for MAP Receivers 195 mance Analysis of Coherent Digital Signaling Schemes Coherent Binary Systems 198	177 179 180 184 184 186
	3-11 SIGI DIGI 4-1 4-2	Refere Proble NAL-SI TAL D Introd Optime 4-2.1 4-2.2 4-2.3 4-2.4 Perfor 4-3.1 4-3.2	ator Structures for QPSK, OQPSK, and MSK ope Functions for BPSK, QPSK, OQPSK, and MSK nces ms PACE METHODS IN ATA TRANSMISSION action um Receiver Principles in Terms of Vector Spaces Maximum a Posteriori Detectors 186 Vector-Space Representation of Signals 188 MAP Detectors in Terms of Signal Spaces 192 Performance Calculations for MAP Receivers 195 mance Analysis of Coherent Digital Signaling Schemes Coherent Binary Systems 198 Coherent M-ary Orthogonal Signaling Schemes 200	177 179 180 184 184 186
And the second s	3-11 SIGI DIGI 4-1 4-2	Refere Proble NAL-SI TAL D Introde Optime 4-2.1 4-2.2 4-2.3 4-2.4 Perfore 4-3.1 4-3.2 4-3.3	ator Structures for QPSK, OQPSK, and MSK ope Functions for BPSK, QPSK, OQPSK, and MSK nces ms PACE METHODS IN ATA TRANSMISSION uction um Receiver Principles in Terms of Vector Spaces Maximum a Posteriori Detectors 186 Vector-Space Representation of Signals 188 MAP Detectors in Terms of Signal Spaces 192 Performance Calculations for MAP Receivers 195 mance Analysis of Coherent Digital Signaling Schemes Coherent Binary Systems 198 Coherent M-ary Orthogonal Signaling Schemes 200 M-ary Phase-Shift Keying 204	177 179 180 184 184 186
	3-11 SIGI DIGI 4-1 4-2	Envelor Refere Proble NAL-Si TAL D Introdu Optimu 4-2.1 4-2.2 4-2.3 4-2.4 Perfor 4-3.1 4-3.2 4-3.3 4-3.4	ator Structures for QPSK, OQPSK, and MSK ope Functions for BPSK, QPSK, OQPSK, and MSK nces ms PACE METHODS IN ATA TRANSMISSION action um Receiver Principles in Terms of Vector Spaces Maximum a Posteriori Detectors 186 Vector-Space Representation of Signals 188 MAP Detectors in Terms of Signal Spaces 192 Performance Calculations for MAP Receivers 195 mance Analysis of Coherent Digital Signaling Schemes Coherent Binary Systems 198 Coherent M-ary Orthogonal Signaling Schemes 200 M-ary Phase-Shift Keying 204 Multi-amplitude/Phase-Shift Keyed Systems 207	177 179 180 184 184 186
Manual Section 1988	3-11 SIGI DIGI 4-1 4-2	Refere Proble NAL-SI TAL D Introde Optime 4-2.1 4-2.2 4-2.3 4-2.4 Perfore 4-3.1 4-3.2 4-3.3	ator Structures for QPSK, OQPSK, and MSK ope Functions for BPSK, QPSK, OQPSK, and MSK nces ms PACE METHODS IN ATA TRANSMISSION uction um Receiver Principles in Terms of Vector Spaces Maximum a Posteriori Detectors 186 Vector-Space Representation of Signals 188 MAP Detectors in Terms of Signal Spaces 192 Performance Calculations for MAP Receivers 195 mance Analysis of Coherent Digital Signaling Schemes Coherent Binary Systems 198 Coherent M-ary Orthogonal Signaling Schemes 200 M-ary Phase-Shift Keying 204 Multi-amplitude/Phase-Shift Keyed Systems 207 Bandwidth Efficiency of M-ary Digital Communication	177 179 180 184 184 186
	3-11 SIGI DIGI 4-1 4-2	Envelor Refere Proble NAL-SI TAL D Introde Optime 4-2.1 4-2.2 4-2.3 4-2.4 Perform 4-3.1 4-3.2 4-3.3 4-3.4 4-3.5	ator Structures for QPSK, OQPSK, and MSK ope Functions for BPSK, QPSK, OQPSK, and MSK nces ms PACE METHODS IN ATA TRANSMISSION uction um Receiver Principles in Terms of Vector Spaces Maximum a Posteriori Detectors 186 Vector-Space Representation of Signals 188 MAP Detectors in Terms of Signal Spaces 192 Performance Calculations for MAP Receivers 195 mance Analysis of Coherent Digital Signaling Schemes Coherent Binary Systems 198 Coherent M-ary Orthogonal Signaling Schemes 200 M-ary Phase-Shift Keying 204 Multi-amplitude/Phase-Shift Keyed Systems 207 Bandwidth Efficiency of M-ary Digital Communication Systems 211	177 179 180 184 184 186
	3-11 SIGI DIGI 4-1 4-2	Envelor Refere Proble NAL-Si TAL D Introde Optime 4-2.1 4-2.2 4-2.3 4-2.4 Perform 4-3.1 4-3.2 4-3.3 4-3.5 Signalia	ator Structures for QPSK, OQPSK, and MSK ope Functions for BPSK, QPSK, OQPSK, and MSK nces ms PACE METHODS IN ATA TRANSMISSION action In Receiver Principles in Terms of Vector Spaces Maximum a Posteriori Detectors 186 Vector-Space Representation of Signals 188 MAP Detectors in Terms of Signal Spaces 192 Performance Calculations for MAP Receivers 195 mance Analysis of Coherent Digital Signaling Schemes Coherent Binary Systems 198 Coherent M-ary Orthogonal Signaling Schemes 200 M-ary Phase-Shift Keying 204 Multi-amplitude/Phase-Shift Keyed Systems 207 Bandwidth Efficiency of M-ary Digital Communication Systems 211 ng Schemes Not Requiring Coherent References at the	177 179 180 184 184 186
	3-11 SIGI DIGI 4-1 4-2	Refere Proble NAL-SI Introde Optime 4-2.1 4-2.2 4-2.3 4-2.4 Perfore 4-3.1 4-3.2 4-3.3 4-3.5 Signali Receive	ator Structures for QPSK, OQPSK, and MSK ope Functions for BPSK, QPSK, OQPSK, and MSK nees ms PACE METHODS IN ATA TRANSMISSION action um Receiver Principles in Terms of Vector Spaces Maximum a Posteriori Detectors 186 Vector-Space Representation of Signals 188 MAP Detectors in Terms of Signal Spaces 192 Performance Calculations for MAP Receivers 195 mance Analysis of Coherent Digital Signaling Schemes Coherent Binary Systems 198 Coherent M-ary Orthogonal Signaling Schemes 200 M-ary Phase-Shift Keying 204 Multi-amplitude/Phase-Shift Keyed Systems 207 Bandwidth Efficiency of M-ary Digital Communication Systems 211 mg Schemes Not Requiring Coherent References at the err	177 179 180 184 184 186
	3-11 SIGI DIGI 4-1 4-2	Envelor Refere Proble NAL-Si TAL D Introde Optime 4-2.1 4-2.2 4-2.3 4-2.4 Perform 4-3.1 4-3.2 4-3.3 4-3.5 Signalia	ator Structures for QPSK, OQPSK, and MSK ope Functions for BPSK, QPSK, OQPSK, and MSK nces ms PACE METHODS IN ATA TRANSMISSION action In Receiver Principles in Terms of Vector Spaces Maximum a Posteriori Detectors 186 Vector-Space Representation of Signals 188 MAP Detectors in Terms of Signal Spaces 192 Performance Calculations for MAP Receivers 195 mance Analysis of Coherent Digital Signaling Schemes Coherent Binary Systems 198 Coherent M-ary Orthogonal Signaling Schemes 200 M-ary Phase-Shift Keying 204 Multi-amplitude/Phase-Shift Keyed Systems 207 Bandwidth Efficiency of M-ary Digital Communication Systems 211 ng Schemes Not Requiring Coherent References at the	177 179 180 184 184 186

CONTENTS XIII

	4-5	Efficient Signalin	ng for Message Sequences	222
		4-5.1 Summary	y of Block-Orthogonal and M-ary Signaling	
		Performa		
		4-5.2 Channel	Coding Theorem 224	
	4-6	Multi-h Continue	ous Phase Modulation	228
		4-6.1 Descripti	ion of the Multi-h CPM Signal Format 229	
		4-6.2 Performa	ance Bounds [12] 233	
		4-6.3 Calculati	ion of Power Spectra for Multi-h CPM	
		Signals	236	
		4-6.4 Synchron	nization Considerations for Multi-h CPM	
		Signals	243	
		4-6.5 Applicat	tion of the Viterbi Algorithm to Detection of	
			CPM Signals 246	
		References	-	250
		Problems		251
powitów: garting	CEI	JERATION OF	COHERENT REFERENCES	254
be. colif	U L.			254
	5-1	Introduction		254
	5-2		Phase Noise and its Properties	255
			Considerations 255	
			nd Frequency Noise Power Spectra 255	
		5-2.3 Allan V		
			of Frequency Multipliers and Dividers	
			se-Noise Spectra 260	2/1
	5-3	Phase-Lock Loo	op Models and Characteristics of Operation	261
			onized Mode: Linear Operation 261	
			of Noise 266	
			Locked-Loop Tracking of Oscillators	
			ase Noise 270	
			itter Plus Noise Effects 271	
			nt Response 272	
			Locked-Loop Acquisition 275	
			Configurations 278	
			of Transport Delay 281	201
	5-4	Frequency Synt		281
			Synthesizers 281	
		5-4.2 Direct S		
			Locked Frequency Synthesizers 287	289
		References		
		Problems		290
2.5	SY	NCHRONIZAT	ION OF DIGITAL	
	CO	MMUNICATIO	N SYSTEMS	293
		The Course D	raklam of Synahyanization	293
	6-1	Ine General Pi	roblem of Synchronization the MAP and ML Principles to Estimation	<u> </u>
	6-2			296
		of Signal Parar		<i>₽</i> /0
		6-2.1 Prelimi	inary Definitions and Relationships 296 sions for Estimation of Continuous Waveform	
		Parame	Heis 290	

		6-2.3 Generalization of the Estimator Equations to Multiple	
		Symbol Intervals and Multiple Parameters 302 6-2.4 Data-Aided Versus Non-Data-Aided	
		6-2.4 Data-Aided Versus Non-Data-Aided Synchronization 309	
		6-2.5 Joint Estimation of Parameters 309	
		6-2.6 Open-Loop Versus Closed-Loop Structures 311	
		6-2.7 Practical Timing Epoch Estimators 312	
	6-3	Synchronization Methods Based on Properties of Wide-Sense	
		Cyclostationary Random Processes	314
		6-3.1 Carrier Recovery Circuits 315	217
		6-3.2 Delay and Multiply Circuits for Symbol Clock	
		Estimation 319	
		References	325
		Problems	325
######################################			
1		RODUCTION TO SPREAD SPECTRUM SYSTEMS	327
	7-1	Introduction	327
	7-2	Two Communications Problems	328
		7-2.1 Pulse-Noise Jamming 328	
	7-3	7-2.2 Low Probability of Detection 330	222
	7-3	Direct-Sequence Spread Spectrum 7-3.1 BPSK Direct-Sequence Spread Spectrum 332	332
		7-3.1 BPSK Direct-Sequence Spread Spectrum 332 7-3.2 QPSK Direct-Sequence Spread Spectrum 340	
		7-3.3 MSK Direct-Sequence Spread Spectrum 344	
	7-4	Frequency-Hop Spread Spectrum	2/10
	/- -	7-4.1 Coherent Slow-Frequency-Hop Spread Spectrum 348	348
		7-4.2 Noncoherent Slow-Frequency-Hop Spread	
		Spectrum 352	
		7-4.3 Noncoherent Fast-Frequency-Hop Spread	
		Spectrum 354	
	7-5	Hybrid Direct-Sequence/Frequency-Hop Spread Spectrum	355
	7-6	Complex-Envelope Representation of Spread-Spectrum	
		Systems	357
		References	361
		Problems	361
Services Services		ARY SHIFT REGISTER SEQUENCES	
		SPREAD-SPECTRUM SYSTEMS	365
	8-1	Introduction Definitions, Mathematical Background, and Sequence	365
	8-2	Generator Fundamentals	266
		8-2.1 Definitions 366	366
		8-2.2 Finite-Field Arithmetic 368	
		8-2.3 Sequence Generator Fundamentals 375	
	8-3	Maximal-Length Sequences	385
	- •	8-3.1 Properties of <i>m</i> -Sequences 385	202
		8-3.2 Power Spectrum of <i>m</i> -Sequences 387	
		8-3.3 Tables of Polynomials Yielding <i>m</i> -Sequences 388	

CONTENTS XV

	8-4 8-5 8-6	**Moderation Properties of **m-Sequences** 392 8-3.5 Power Spectrum of $c(t)c$ ($t+\epsilon$) 396 8-3.6 Generation of Specific Delays of **m-Sequences** 396 Gold Codes Rapid Acquisition Sequences Nonlinear Code Generators References Problems	404 407 411 415 416
of Wales Water and Water and	COD	E TRACKING LOOPS	419
	9-1	Introduction	419
	9-2	Optimum Tracking of Wideband Signals	420
	9-3	Baseband Full-Time Early-Late Tracking Loop	423
	9-4	Full-Time Early-Late Noncoherent Tracking Loop	433
	9-5	Tau-Dither Early-Late Noncoherent Tracking Loop	447
	9-6	Double-Dither Early-Late Noncoherent Tracking Loop	456
	9-7	Full-Time Early-Late Noncoherent Tracking Loop with	459
	9-8	Arbitrary Data and Spreading Modulation Code Tracking Loops for Frequency-Hop Systems	467
	9-0 9-9	Summary	478
	7-7	References	480
		Problems	480
	10-1 10-2 10-3	Introduction Problem Definition and the Optimum Synchronizer Serial Search Synchronization Techniques 10-3.1 Calculation of the Mean and Variance of the Synchronization Time 488 10-3.2 Modified Sweep Strategies 492 10-3.3 Continuous Linear Sweep of Uncertainty Region 494 10-3.4 Detection of a Signal in Additive White Gaussian Noise (Fixed Integration Time, Multiple Dwell, and Sequential	484 486 488
	10-4 10-5 10-6 10-7	Synchronization by Estimating the Received Spreading Code Tracking Loop Pull-In	538 540 543 547 550 551
		FORMANCE OF SPREAD-SPECTRUM SYSTEMS A JAMMING ENVIRONMENT	555
	11-1	Introduction	555
	11-2		556
CONT	ENTS		xvi

	11-3	Performance of Spread-Spectrum Systems Without Coding	561
		11-3.1 Performance in AWGN or Barrage Noise	
		Jamming 562	
		11-3.2 Performance in Partial Band Jamming 570	
		11-3.3 Performance in Pulsed Noise Jamming 582	
		11-3.4 Performance in Single-Tone Jamming 586	
		11-3.5 Performance in Multiple-Tone Jamming 597	
		11-3.6 Conclusions 602	
		References	602
		Problems	604
12	PER	FORMANCE OF SPREAD-SPECTRUM SYSTEMS	
		H FORWARD ERROR CORRECTION	606
	12-1	Introduction	606
	12-2	Elementary Block Coding Concepts	607
		12-2.1 Optimum Decoding Rule 609	
		12-2.2 Calculation of Error Probability 612	
	12-3	Elementary Convolutional Coding Concepts	616
		12-3.1 Decoding of Convolutional Codes 618	
		12-3.2 Error Probability for Convolutional Codes 620	
	12-4	Results for Specific Error Correction Codes	620
		12-4.1 BCH Codes 621	
		12-4.2 Reed–Solomon Codes 622	
		12-4.3 Maximum Free-Distance Convolutional Codes 624	
		12-4.4 Repeat Coding for the Hard Decision FH/MFSK	
		Channel 624	
	12-5	Interleaving	630
	12-6	Random Coding Bounds	632
		References	633
		Problems	634
1 C	EV A	MADI E CODEAD COECTRUM CVCTEMO	
13		MPLE SPREAD-SPECTRUM SYSTEMS	635
	13-1	Introduction	635
	13-2	Space Shuttle Spectrum Depsreader	636
	13-3	TDRSS User Transponder	640
	13-4	₽ ₽	644
	13-5	Joint Tactical Information Distribution System	647
		References	649
	ADD	ENDICES	
	APP	ENADIGES	
Д	PRO	BABILITY AND RANDOM VARIABLES	650
	A-1	Probability Theory	650
	A-1 A-2	Random Variables, Probability Density Functions, and	030
	r 1- 4	Averages	654
	A-3	Characteristic Function and Probability Generating Functions	658
	m-J	Characteristic Punction and Frobability Otherating Punctions	050

CONTENTS XVII

A-4 Transformations of Random Variables	653
	667
A-6 Random Processes	668
A-7 Input/Output Relationships for Fixed Linear Systems with	
	674
	681
<u>-</u>	685
	687
Problems	687
CHARACTERIZATION OF INTERNALLY	
GENERATED NOISE	691
COMMUNICATION LINK PERFORMANCE	697
CALCULATIONS	097
OVERVIEW OF THE VITERBI ALGORITHM	704
GAUSSIAN PROBABILITY FUNCTION	713
	716
OF HARDON BRIANT DIGITO AND HARDON FORES	
CALCULATION OF THE POWER SPECTRUM	
OF THE PRODUCT OF TWO M-SEQUENCES	720
	728
AND POHER SPECINA	720
INDEX	740
	A-5 Central Limit Theorem A-6 Random Processes A-7 Input/Output Relationships for Fixed Linear Systems with Random Inputs; Power Spectral Density A-8 Examples of Random Processes A-9 Narrowband Noise Representation References Problems CHARACTERIZATION OF INTERNALLY GENERATED NOISE COMMUNICATION LINK PERFORMANCE CALCULATIONS OVERVIEW OF THE VITERBI ALGORITHM GAUSSIAN PROBABILITY FUNCTION POWER SPECTRAL DENSITIES FOR SEQUENCES OF RANDOM BINARY DIGITS AND RANDOM TONES CALCULATION OF THE POWER SPECTRUM OF THE PRODUCT OF TWO M-SEQUENCES

CONTENTS XVIII