Preface		 	 	xi
Acknowledgements		 	 •••••	xv
List of figures		 	 	xxi
List of tables		 	 	xxvii
List of symbols		 	 	xxix
List of abbreviations and	acronyms	 	 	xxxiii

PA	RT I Tsunami as a known hazard	1
1	Introduction	3
	Introduction	3
	Five stories	4
	1 An Aboriginal legend.	4
	2 The Kwenaitchechat Legend, Pacific Northwest.	5
	3 Krakatau, August 27, 1883	6
	4 Burin Peninsula, Newfoundland, November 18, 1929	7
	5 Papua New Guinea, July 17, 1998	9
	Scientific fact or legends?	10
	Causes of tsunami	12
	Distribution and fatalities	14
	Mediterranean Sea	15
	Caribbean Sea	15

	Pacific Ocean Region (including Indonesia)	16 22 23 24
2	Tsunami dynamics Introduction Tsunami characteristics. Tsunami wave theory. Tsunami wave theory. Resonance Shallow-water, long-wave theory. Run-up and inundation Run-up Inland penetration Depth and velocity at shore.	27 27 31 36 37 40 40 45 46
PA	RT II Tsunami-formed landscapes	49
3	Signatures of tsunami in the coastal landscape Introduction Depositional signatures of tsunami Buried sand or anomalous sediment layers Foraminifera and diatoms Boulder floaters in sand Dump deposits Mounds and ridges Chevrons and dune bedforms Smear deposits Large boulders and piles of imbricated boulders Turbidites Erosional signatures of tsunami Small-scale features Large-scale features Flow dynamics	51 53 53 57 59 60 63 65 67 68 75 77 77 83 86
4	Coastal landscape evolution Introduction Catastrophism vs. uniformitarianism Tsunami vs. storms The nature of tsunami vs. storm deposits Movement of boulders	91 91 91 94 95 96

Types of coastal landscapes created by tsunami	98
Sandy barrier coasts	98
Deltas and alluvial plains	101
Rocky coasts	103
Atolls	104
Examples of tsunami-generated landscapes: Australia	106
South coast of New South Wales	106
Cairns Coast, Northeast Queensland	109
Northwest West Australia	112
Other examples of tsunami-generated landscapes	115
Grand Cayman	115
Bahamas	117
Chilean coast	119

PA	RT III Causes of tsunami	1
	Earthquake-generated tsunami	1
	Introduction	1
	Seismic waves	1
	Magnitude scales for earthquakes and tsunami	1
	Earthquake magnitude scales	12
	Tsunami earthquakes	1
	Tsunami magnitude scales	1
	Seismic gaps and tsunami occurrence	1
	Relationships between earthquakes and tsunami	1
	How earthquakes generate tsunami	1
	Linking tsunami run-up to earthquake magnitude	1
	Large historical tsunamigenic earthquakes	1
	Lisbon, November 1, 1755	1
	Chile, May 22, 1960	1
	Alaska, March 27, 1964	1
	Events of the 1990s	1
	Slow Nicaraguan tsunami earthquake of September 2, 1992	1
	Flores, December 12, 1992	1
	The Hokkaido Nansei-Oki tsunami of July 12, 1993	1
	Papua New Guinea, July 17, 1998	1
	The Indian Ocean tsunami, December 26, 2004	1

6	Great landslides	179
	Introduction	179
	Causes of submarine landslides	181

How submarine landslides generate tsunami	184
Historical tsunami attributable to landslides	186
The Lituya Bay landslide of July 9, 1958	187
Grand Banks tsunami, November 18, 1929	189
Geological events	193
Hawaiian landslides	193
The Canary Islands	196
The Storegga slide of 7950 BP	198
Bristol Channel, U.K., January 30, 1607	205
The risk in the world's oceans	213
Other volcanic islands	213
Other topography	215

7	Volcanic eruptions	217
	Introduction.	217
	Causes of volcano-induced tsunami.	217
	Krakatau, August 26–27, 1883	222
	Santorini, around 1470 BC	225
	Suntoini, around 1470 be	••••

8	Comets and asteroids	231
	Introduction.	231
	Near Earth objects (NEOs)	231
	What are they?	231
	How frequent have comet and asteroid impacts been?	234
	How do extraterrestrial objects generate tsunami?	236
	Mechanisms for generating tsunami.	236
	Size of tsunami.	238
	Geological events	245
	Hypothesized frequency	245
	Chicxulub, the Cretaceous–Tertiary (K/T) extinction event	247
	Other events.	251
	Deluge Comet impact event $8,200 \pm 200$ years ago	251
	The Mahuika Comet impact event and eastern Australia	253
	Geological evidence for mega-tsunami	254
	Maori legends supporting a cosmogenic event	257
	Aboriginal legends supporting a cosmogenic event	258
	Timing of Mahuika	260
	Events in the Kimberley, Western Australia	263
	Legends supporting cosmogenic tsunami	263
	Field evidence.	266

PA	RT IV Modern risk of tsunami	271
9	Risk and avoidance	273
	Introduction	273
	What locations along a coast are at risk from tsunami?	277
	Warning systems.	280
	The Pacific Tsunami Warning Center	280
	Flaws in regional warning systems	285
	Localized tsunami warning systems	286
	How long have you got?	290
	Where should you go if there is a tsunami warning?	291
	What if it is an asteroid or comet?	294
	Is it all that bad? The case of Sydney	295
10	Epilogue	299
	Five stories	299
	1 An unsuspected earthquake	299
	2 An unassuming earthquake	302
	3 A submarine landslide	303
	4 A volcanic eruption	304
	5 An asteroid impact with the ocean	305
	Concluding comments	306
Def		300
Kel	erences	309
Ind	ex	325