Inhaltsverzeichnis

1	Einführung	13
1.1	Elektromagnetische Verträglichkeit in elektrischen Netzen	13
1.2	Klassifizierung von Störgrößen (Netzrückwirkungen)	19
1.3	EU-Richtlinien, VDE-Bestimmungen, Normung	21
1.4	Merkmale der Spannung in Netzen, DIN EN 50160	25
1.5	Mathematische Grundlagen	28
1.5.1	Komplexe Rechnung, Zählpfeile und Zeigerdiagramme	28
1.5.2	Fourieranalyse und -synthese	35
1.5.3	System der symmetrischen Komponenten	41
1.5.4	Messung der Impedanzen der symmetrischen Komponenten	
	(012-System)	47
1.5.5	Symmetrische Komponenten und Oberschwingungen	52
1.5.6	Leistungsbetrachtungen	53
1.5.7	Statistik	56
1.6	Berechnung der Impedanzen von Betriebsmitteln	61
1.7	Rechenbeispiele	67
1.7.1	Grafische Ermittlung der symmetrischen Komponenten	67
1.7.2	Rechnerische Ermittlung der symmetrischen Komponenten	69
1.7.3	Berechnung von Betriebsmitteln	70
	Literatur Kapitel 1	72
2	Elektrische Netze und Betriebsmittel	73
2.1	Struktur und Aufbau elektrischer Netze	73
2.1.1	Strahlennetze	73
2.1.2	Ringnetze	74
2.1.3	Vermaschte Netze	77
2.1.4	Maschennetze	77
2.2	Netzbedingungen	81
2.2.1	Spannungsebenen und Impedanzen	81
2.2.2	Empfohlene Spannungsebenen	83
2.3	Berechnung von Netzen und Betriebsmitteln	84
2.3.1	Allgemeines	84
2.3.2	Modellierung von Betriebsmitteln	85
2.3.3	Besonderheiten der Nachbildung von Verbraucherlasten	87
2.4	Reihen- und Parallelschwingkreise in Energieversorgungsnetzen	90
2.5	Berechnung von Kurzschlussleistung und Kurzschlussströmen	
	nach DIN EN 60909-0 (VDE 0102)	96
2.5.1	Allgemeines	
2.5.2	Berechnung der Kurzschlussstromparameter	

2.5.3	Einfluss von Motoren	103
2.6	Berechnung der größten Netzimpedanz zur Beurteilung von	
	Netzrückwirkungen	104
2.7	Kenndaten typischer Betriebsmittel	106
2.8	Beispiele	110
2.8.1	Berechnung von Schwingkreisen	110
2.8.2	Resonanzen in Mittelspannungskabelnetzen	
2.8.3	Berechnung des Kurzschlussstroms nach DIN EN 60909-0	
	(VDE 0102) und der Netzimpedanz nach VDN-Technische Regeln	111
2.8.4	Berechnung der frequenzabhängigen Impedanz in einem	
	Mittelspannungsnetz	114
2.8.5	Frequenzabhängige Impedanz eines 220-kV-Netzes	116
	Literatur Kapitel 2	117
	r	
3	Anlagen zur Nutzung erneuerbarer Energiequellen	119
3.1	Grundlagen	119
3.2	Grundlagen der Leitungselektronik	121
3.2.1	Allgemeines	121
3.2.2	Fremdgeführte (netzgeführte) Stromrichter	123
3.2.2.1	Allgemeines	123
3.2.2.2	Drehstrombrückenschaltung	124
3.2.3	Selbstgeführte Stromrichter	130
3.2.3.1	Allgemeines	130
3.2.3.2	Umrichter	131
3.2.3.3	Pulsweitenmodulation	
3.2.4	Gleichspannungswandler	
3.2.4.1	Tiefsetzsteller	138
3.2.4.2	Hochsetzsteller	
3.3	Photovoltaikanlagen	
3.3.1	Grundlagen	
3.3.2	Wechselrichter in PV-Anlagen	145
3.3.3	Funktioneller Aufbau von PV-Wechselrichtern	
3.3.4	Netzüberwachung	
3.4	Windenergieanlagen	149
3.4.1	Grundlagen	149
3.4.2	Elektrische Ausrüstung von Windenergieanlagen	152
3.4.2.1	Allgemeines	152
3.4.2.2	Asynchrongenerator mit direkter Netzankopplung	152
3.4.2.3	Asynchrongenerator mit direkter Netzankopplung und dynamischer	104
	Schlupfregelung	153
3.4.2.4	Doppelt gespeister Asynchrongenerator mit Umrichter im	122
	Läuferkreis	154
3.4.2.5	Synchrongenerator mit Umrichter (Gleichspannungszwischenkreis) .	155
	- (Grandparing Sold is chemical)	

nen Oberschwingungen
1 163
168
2
169
schlussbedingungen 169
eiber 172
172
r Versorgung von
172
Anschluss an das
173
rgie e. V.
173
174
igsnetz 174
ngsnetz 175
on Netzrückwirkungen 175
rückwirkungen.
annungsqualität 176
iffe und Definitionen 176
schlussleistung 178
nungsänderungen und
179
nungsunsymmetrie 182
schwingungen 182
mutierungseinbrüche 191
chenharmonische
192
equenzrundsteuerungen
192
eugungsanlagen 192
nische 195
195
195
asten 195

5.1.3	Zweiweg-Gleichrichter mit kapazitiver Glättung	198
5.1.4	Höherpulsige leistungselektronische Schaltungen	201
5.1.5	Entstehung durch stochastisches Verbraucherverhalten	201
5.1.5	Rundsteuersignale	205
5.2	Beschreibung und Berechnung	207
5.2.1	Kenngrößen und Parameter	207
5.3	Auswirkungen von Oberschwingungen und	
	Zwischenharmonischen	210
5.3.1	Allgemeines	210
5.3.2	Motoren und Generatoren	
5.3.3	Kondensatoren	
5.3.3.1	Resonanzen in elektrischen Netzen	212
5.3.3.2	Auswirkungen von Oberschwingungen auf Kondensatoren	
5.3.3.3	Verdrosselung von Kondensatoren	217
5.3.3.4	Belastbarkeit von Kondensatoren	220
5.3.4	Andere energietechnische Betriebsmittel	221
5.3.5	Netzbetrieb	223
5.3.6	Elektronische Betriebsmittel	223
5.3.7	Schutz-, Mess- und Automatisierungsgeräte	224
5.3.8	Lasten und Verbraucher	227
5.4	Bewertung von Oberschwingungen	
5.4.1	Allgemeines, Verträglichkeitspegel	
5.4.2	Grenzwerte für Oberschwingungen von Geräten mit einem	
	Nennstrom ≤ 16 A	232
5.4.3	Grenzwerte für Oberschwingungen von Geräten mit einem	
	Nennstrom ≤ 75 A	236
5.4.4	Bewertung nach Technischen Regeln zur Beurteilung von	
	Netzrückwirkungen	240
5.5	Bewertung von Zwischenharmonischen	
5.6	Mess- und Rechenbeispiele	247
5.6.1	Oberschwingungsresonanz durch Blindstromkompensation	247
5.6.2	Bewertung von Oberschwingungen	
5.6.3	Zwischenharmonische	
5.6.4	Störaussendungen von Niederspannungsverbrauchern	255
	Literatur Kapitel 5	259
6	Spannungsschwankungen und Flicker	261
6.1	Einführung	261
6.2	Flickererzeugende Lasten	263
6.2.1	Motoren	263
6.2.2	Drehstrom-Lichtbogenofen	267
6.2.3	Widerstandsschweißmaschinen	269
6.3	Summationsgesetz für Flicker	275

6.4	Berechnung der Flickerstärke	
6.4.1	Beispiel – Berechnung der Flickerstärke	286
6.5	Ermittlung des Spannungsänderungsverlaufs zur Beurteilung der	
	Störaussendung einzelner Verbrauchseinrichtungen	287
6.5.1	Symmetrische Belastung	288
6.5.1.1	Beispiel – Spannungsänderung beim Motoranlauf	291
6.5.2	Unsymmetrische Belastung	291
6.5.2.1	Beispiel – Anschlussbeurteilung einer Punktschweißmaschine	295
6.6	Verteilung der Flickerpegel im Netz	
6.6.1	Verlegung des Anschlusspunkts einer Last	301
6.6.1.1	Beispiel – Flickerverteilung im Netz	
6.6.1.2	Beispiel – Verlagerung des Anschlusspunkts	
6.6.1.3	Beispiel – Transferkoeffizient, Summationsgesetz	
6.7	Flickerminimierung und Kompensation	
6.7.1	Anlagenseitige Maßnahmen:	
6.7.2	Netzseitige Maßnahmen:	
6.8	Flicker durch Zwischenharmonische	
6.8.1	Beispiel – Flicker durch Zwischenharmonische	
6.9	Anschluss von Flicker erzeugenden Lasten an das öffentliche Netz	
6.9.1	Grenzwerte für Spannungsschwankungen und Flicker von Geräten	
0.7	mit einem Nennstrom ≤ 16 A –	
	DIN EN 61000-3-3 (VDE 0838-3)	316
6.9.2	Grenzwerte für Spannungsschwankungen und Flicker von Geräten	
0.5.2	mit einem Nennstrom von ≤ 75 A, die einer Sonderanschluss-	
	bedingung unterliegen –	
	DIN EN 61000-3-11 (VDE 0838-11)	323
6.9.3	Anschluss von Kundenanlagen größerer Leistung an das öffentliche	J
0.7.0	NS-/MS-Netz – die VDN (D-A-CH-CZ)-Technische Regeln	326
	Literatur Kapitel 6	
	Eneratur Rupiter o	22)
7	Spannungsunsymmetrien	331
7.1	Ursachen und Beschreibungsparameter	331
7.2	Auswirkungen, Grenzwerte und Normung	
7.3	Bewertung von Spannungsunsymmetrien in	555
7.0	Niederspannungsnetzen	333
7.4	Bewertung von Spannungsunsymmetrien in Mittel-, Hoch- und	555
/ ,r	Höchstspannungsnetzen	335
7.4.1	Allgemeines, Planungspegel	
7.4.2	Summations exponent α	
7.4.3	Transferfaktoren T	
7.4.4	Faktoren $k_{0.E}$	
7.4.5	Bewertung in Mittelspannungsnetzen	330
7.4.6	Bewertung in Hoch- und Höchstspannungsnetzen	
7.4.0	Deweitung in Troch- und Trochstspannungsnetzen	344

7.5	Beispiele	344
7.5.1	Bewertung eines unsymmetrischen Verbrauchers im	
	Niederspannungsnetz	344
7.5.2	Bewertung eines unsymmetrischen Verbrauchers im	
	Mittelspannungsnetz	344
7.5.3	Spannungsunsymmetrie in einem Industriebetrieb	
	Literatur Kapitel 7	346
8	Messgeräte und Messverfahren	347
8.1	Zielsetzung von Messungen	
8.2	Oberschwingungsmessverfahren – DIN EN 61000-4-7	
	(VDE 0847-4-7)	351
8.3	Flickermeter – DIN EN 61000-4-15 (VDE 0847-4-15)	369
8.4	Verfahren zur Messung der Spannungsqualität –	
	DIN EN 61000-4-30 (VDE 0847-4-30)	378
	Literatur Kapitel 8	