Table of Contents

Foreword	1
Introduction Design for Six Sigma ^{+Lean}	
- Implementing Innovation Successfully	5
- The Six Sigma ^{+Lean} Approach	9
- The Goal of Six Sigma ^{+Lean}	9
- The Four Dimensions of Six Sigma ^{+Lean}	10
 Developing New Processes and/or Products with DFSS^{+Lean} 	13
- Critical Success Factors	16
- Employee Acceptance	16
- The Quality of Applied Tools and Methods	18
- Summary: the Benefits of DFSS ^{+Lean}	20
Phase 1: DEFINE	21
Initiating the Project	24
- Project Charter	24
- Business Case	26
- Redesign	28
- New Design	30
Project Benefit	31
- Project Team	33

Scoping the Project	34
- Project Scope	34
Multigeneration Plan	36
- Project Mapping	38
Managing the Project	40
- Project Management	40
- Activities, Time and Resource Planning	41
- RACI Chart	46
- Project Budgeting	48
- Stakeholder Analysis	50
- Change Management	52
- Risk Assessment	54
- Kick-off Meeting	56
- Define Gate Review	57
Phase 2: MEASURE	59
Selecting Customers	
- Identifying Customers	63
- ABC Classification	65
- Portfolio Analysis	66
- 5W1H Table	
Collecting Customer Voices	68
- Selecting and Carrying out Research Methods	69

-	Internal Research	71
_	External Research	72
_	Customer Interaction Study	73
_	1-to-1 Interview	76
_	Focus Group Interview	77
_	Survey	78
-	Target Costing	82
S	pecifying Customer Needs	84
_	Identifying Customer Needs	85
-	Customer Needs Table	86
-	Structuring Customer Needs	88
-	Affinity Diagram	89
-	Tree Diagram	90
-	Kano Model	92
_	Prioritizing Customer Needs	94
_	Analytic Hierarchy Process	95
_	Deriving CTQs and Key Output Measurements	98
-	Benchmarking	100
-	Quality Function Deployment (QFD)	102
_	House of Quality (QFD 1)	104
_	Design Scorecard	116
	Risk Evaluation	117
_	Quality Key Figures	119

Contents

– Parts per Million (ppm)	120
- Defects per Unit (DPU)	121
- Yield	122
- C _p and C _{pk} -values	124
- Process Sigma	127
Z-Method for Calculating Sigma	128
- Measure Gate Review	130
Phase 3: ANALYZE	133
Identifying Design Concept	136
- Analyzing Functions	138
- Depicting Functions	140
Deriving Requirements to Functions	142
Developing Alternative Concepts	145
- Brainstorming	146
- Brain Writing	148
- Mind Mapping	149
- SCAMPER	150
- Morphological Box	151
- Benchmarking	153
- Selecting the Best Concept	155
Selection Procedure Based on Pugh (Pugh Matrix)	156
- Conjoint Analysis	160

	- Conjoint Analysis with Minitab®	163
0	ptimizing Design Concept	168
_	TRIZ – Resolving Conflicts in the Selected Concept	169
_	Engineering Contradictions	171
_	TRIZ Contradiction Matrix	184
	Physical Contradictions	188
	- Separating the Contradictory Requirements	190
	- Fulfilling the Contradictory Requirements	193
	- Avoiding the Contradiction	193
_	Sufield Analysis – Incomplete Functional Structures	194
_	76 Standard Solutions	199
_	Trimming – Complexity Reduction	204
_	Evolution of Technological Systems	208
	- Nine Laws of Evolution for Technological Systems	209
_	Deriving Requirements to Necessary Resources	216
Re	eviewing the Capability of the Concept	217
_	Risk Evaluation	218
_	Failure Mode and Effect Analysis (FMEA)	219
_	Anticipatory Failure Detection	224
	Getting Customer and Stakeholder Feedback	226
	Finalizing the Concept	227
_	Preparing Market Launch	230
	Analyze Gate Review	233

P	nase 4: DESIGN	235
De	velop, Test and Optimize Detailed Design	238
_	Drawing up Transfer Function	240
	Zigzag Diagram	242
_	QFD 3	243
	Generating Alternative Characteristics of Design Elements	244
-	Tolerance Design	246
_	Design for X	248
	Developing a Design Scorecard for the Detailed Design	250
_	Testing Detailed Design	252
_	Implementing Prototype	253
_	Comparing Alternative Designs	254
	Hypothesis Testing	255
	Design of Experiments (DOE)	_264
	Selecting Detailed Design	274
_	Adjusting Design Scorecards	_275
_	Risk Evaluation	_276
_	Avoiding Risks	_277
R	eviewing the Performance Capability for the Target Production	_282
	QFD4	_283
_	Evaluating the Current Process Performance	_284
D	eveloping and Optimizing Lean Process	_288
	SIPOC	289

_	Process Diagram	290
_	Value Stream Map	_ 291
_	Developing Standard Operating Procedures	_ 296
_	Minimizing Process Lead Time	298
_	Facility Layout Planning	_ 306
_	Spaghetti Diagram	307
-	5S Concept	_ 308
_	Planning the Equipment	_ 310
-	Planning Material Procurement	_ 311
-	Making Employees Available	_ 312
	Providing IT	_ 314
-	Optimizing Lean Process Design	_ 315
_	Design Gate Review	_ 316
Р	hase 5: VERIFY	_ 319
Pr	eparing Implementation	_ 322
_	Setting up KPI System	_ 326
_	Setting up Process Monitoring	_ 330
_	Drawing up Process Management Diagram	_ 333
_	Piloting the Process	_ 335
lm	plementing the Process	_ 338
_	Drawing up Final SOPs and Process Documentation	_ 338
)-rea	Carrying out Implementation	_339

Contents

Ha	Handing over the Process	
_	Handing over Process Documentation	341
	Carrying out Project Closure	342
	Verify Gate Review	344
ΑF	PPENDIX	
_	Abbreviations	347
_	Index	350
_	Sigma Table	363
	TRIZ Contradiction Matrix	
_	QFD Matrix	