Table of Contents

Part I Credit Risk Analysis with Computational Intelligence:		
An Analytical Survey	1	
1 Credit Risk Analysis with Computational Intelligence: A I	Review3	
1.1 Introduction		
1.2 Literature Collection	5	
1.3 Literature Investigation and Analysis	7	
1.3.1 What is Credit Risk Evaluation Problem?		
1.3.2 Typical Techniques for Credit Risk Analysis	8	
1.3.3 Comparisons of Models		
1.4 Implications on Valuable Research Topics		
1.5 Conclusions		
Risk Evaluation		
2 Credit Risk Assessment Using a Nearest-Point-Algori SVM with Design of Experiment for Parameter Selection	thm-based	
2.1 Introduction		
2.2 SVM with Nearest Point Algorithm	27	
2.2 DOE-based Parameter Selection for SVM with NPA	33	
2.5 DOL based Faraheter Beleenon for 5 the with First	35	
2.5 Conclusions	38	
2.5 Conordisions		
3 Credit Risk Evaluation Using SVM with Direct Search for	or Parame-	
ter Selection		
3.1 Introduction		
3.2 Methodology Description		
3.2.1 Brief Review of LSSVM		
3.2.2 Direct Search for Parameter Selection		
3.3 Experimental Study		
3 3 L Kesearch Data		

	3.3.2 Parameter Selection with Genetic Algorithm	48
	3.3.3 Parameters Selection with Grid Search	49
	3.3.4 Experimental Results	50
	3.4 Conclusions	54
P	art III	
H	ybridizing SVM and Other Computational Intelligent Techni	ques
fo	or Credit Risk Analysis	57
4	Heberidiaina Daugh Sate and SVM for Credit Disk Evolution	50
4	A 1 Introduction	39 50
	4.1 Inforduction	59 61
	4.2.1 Basic Concents of Rough Sets	61
	4.2.7 Basic Ideas of Support Vector Machines	67
	4.3 Proposed Hybrid Intelligent Mining System	63
	4.3.1 General Framework of Hybrid Intelligent Mining System	63
	4.3.2 2D-Reductions by Rough Sets	64
	4.3.2 ZD-Reductions by Rough Sels	04
	4.3.4 Rule Generation by Rough Sets	05 66
	4.3.5 General Procedure of the Hybrid Intelligent Mining System	00
	4.4 Experiment Study	07
	4.4.1 Corporation Credit Dataset	69
	4 4 2 Consumer Credit Dataset	70
	4.5 Concluding Remarks	
5	A Least Squares Fuzzy SVM Approach to Credit Risk Assessme	nt 73
	5.1 Introduction	73
	5.2 Least Squares Fuzzy SVM	74
	5.2.1 SVM	74
	5.2.2 FSVM	77
	5.2.3 Least Squares FSVM	79
	5.3 Experiment Analysis	81
	5.4 Conclusions	84
,		-
6	Evaluating Credit Risk with a Bilateral-Weighted Fuzzy N	5V M
		C6
	6.2 Formulation of the Bilatoral Weighted Every SVM Model	Co
	6.2 1 Dilateral Weighting Errors	40 09
	6.2.2 Energy Letter Droppes of the Bilateral weighted form SVM	۲۵ ۱۵
	6.2.2 Consisting Membershin	
	6.2 Empirical Analysis	
	0.5 Empirical Analysis	

6.3.1 Dataset 1: UK Case	96
6.3.2 Dataset 2: Japanese Case	98
6.3.3 Dataset 3: England Case	100
6.4 Conclusions	102
7 Evolving Least Squares SVM for Credit Risk Analysis	105
7.1 Introduction	105
7.2 SVM and LSSVM	108
7.3 Evolving LSSVM Learning Paradigm	111
7.3.1 General Framework of Evolving LSSVM Learning Method	.111
7.3.2 GA-based Input Features Evolution	113
7.3.3 GA-based Parameters Evolution	117
7.4 Research Data and Comparable Models	
7.4.1 Research Data	
7.4.2 Overview of Other Comparable Classification Models	121
7.5 Experimental Results	.123
7.5.1 Empirical Analysis of GA-based Input Features Evolution.	.123
7.5.2 Empirical Analysis of GA-based Parameters Optimization.	126
7.5.3 Comparisons with Other Classification Models	129
7.6 Conclusions	131
Part IV	
SVM Ensemble Learning for Credit Risk Analysis	133
8 Credit Risk Evaluation Using a Multistage SVM Ensemble Lear	ning
Approach	135
8.1 Introduction	135
8.2 Previous Studies	138
8.3 Formulation of SVM Ensemble Learning Paradigm	. 140
8.3.1 Partitioning Original Data Set	. 140
8.3.2 Creating Diverse Neural Network Classifiers	. 142
8.3.3 SVM Learning and Confidence Value Generation	. 143
8.3.4 Selecting Appropriate Ensemble Members	. 144
8.3.5 Reliability Value Transformation	. 146
8.3.6 Integrating Multiple Classifiers into an Ensemble Output	. 146
8.4 Empirical Analysis	. 148
8.4.1 Consumer Credit Risk Assessment	. 149
8.4.2 Corporation Credit Risk Assessment	
1	.151
8.5 Conclusions	. 151
8.5 Conclusions	. 151 . 154
8.5 Conclusions9 Credit Risk Analysis with a SVM-based Metamodeling Enset	151 154 mble
 8.5 Conclusions 9 Credit Risk Analysis with a SVM-based Metamodeling Enser Approach 	151 154 mble 157

9.1 Introduction	. 157
9.2 SVM-based Metamodeling Process	. 160
9.2.1 A Generic Metalearning Process	. 160
9.2.2 An Extended Metalearning Process	. 163
9.2.3 SVM-based Metamodeling Process	. 165
9.3 Experimental Analyses	. 173
9.3.1 Research Data and Experiment Design	.173
9.3.2 Experimental Results	.174
9.4 Conclusions	.177
10 An Evolutionary-Programming-Based Knowledge Ensemble M	lodel
for Business Credit Risk Analysis	.179
10.1 Introduction	.179
10.2 EP-Based Knowledge Ensemble Methodology	. 181
10.2.1 Brief Introduction of Individual Data Mining Models	.182
10.2.2 Knowledge Ensemble based on Individual Mining Results	.185
10.3 Research Data and Experiment Design	.188
10.4 Experiment Results	. 189
10.4.1 Results of Individual Models	. 189
10.4.2 Identification Performance of the Knowledge Ensemble	. 191
10.4.3 Identification Performance Comparisons	. 193
10.5 Conclusions	. 195
11 An Intelligent-Agent-Based Multicriteria Fuzzy Group Dec	ision
Making Model for Credit Risk Analysis	. 197
11.1 Introduction	. 197
11.2 Methodology Formulation	.201
11.3 Experimental Study	.206
11.3.1 An Illustrative Numerical Example	.206
11.3.2 Empirical Comparisons with Different Credit Datasets	.208
11.4 Conclusions and Future Directions	.221
References	.223
Subject Index	.239
Biographies of Four Authors of the Book	.243