Contents

1	Intro	duction	1		
2	Distribution of Pore-Fluid Pressure Gradient in the Crust with				
	Temp	erature Neglected	7		
	2.1	The Crust Comprised of a Single Homogeneous Layer	7		
	2.2	The Crust Comprised of Two Homogeneous Layers	10		
	2.3	The Crust Comprised of Three Homogeneous Layers	13		
	2.4	The Critical Crustal Thickness for a Hydrostatic Pore-Fluid			
		Pressure Gradient	15		
3	Pore-Fluid Pressure Gradients in the Crust with Heat Conduction				
	and A	Advection	17		
	3.1	The Effect of Heat Conduction on the Distribution of Pore-Fluid			
		Pressure Gradients	18		
	3.2	The Effect of Heat Conduction and Advection on the Distribution			
		of Pore-Fluid Pressure Gradients	21		
4	Conv	ective Heat Transfer in a Homogeneous Crust	27		
	4.1	Convective Heat Transfer in a Homogeneous Crust			
		without Upward Throughflow	28		
	4.2	Convective Heat Transfer in a Homogeneous Crust with Upward			
		Throughflow	36		
5	Conve	ective Heat Transfer in a Heterogeneous Crust	49		
	5.1	The Influence of Layered Material Heterogeneity on Convective			
		Heat Transfer in a Heterogeneous Crust	49		
	5.2	The Influence of Material Thermoelasticity on Convective Heat			
		Transfer in a Heterogeneous Crust	59		
	5.3	The Influence of Pore-Fluid Viscosity on Convective Heat			
		Transfer in a Heterogeneous Crust	71		
			72		
		5.3.2 Derivation of Analytical Solutions	75		

6	Pore-Fluid Focusing within Two-Dimensional Faults and Cracks of			
		tal Scales with No Temperature Effects: Solutions Expressed		
		ocal Coordinate System		
	6.1	Description of the Problem		
	6.2	Derivation of Governing Equations of the Problem		
		in a Local Elliptical $\xi\eta$ Coordinate System		
	6.3	Derivation of Analytical Solutions when the Long Axis of an		
		Elliptical Inclusion Is Parallel to the Inflow in the Far Field 89		
	6.4	Derivation of Analytical Solutions when the Short Axis of an		
		Elliptical Inclusion Is Parallel to the Inflow in the Far Field 93		
	6.5	Derivation of Analytical Solutions when the Inflow of the Far		
		Field Is Parallel to the X Direction of the Global XY Coordinate		
		System		
	6.6	Derivation of Analytical Solutions when the Inflow		
		of the Far Field Is Parallel to the Y Direction of the Global XY		
		Coordinate System		
	6.7	Application Examples of the Present Analytical		
	0.7	Solutions for Pore-Fluid Focusing Factors within		
		Inclined Elliptical Inclusions		
7	Pore-Fluid Focusing within Two-Dimensional Faults and Cracks of			
	Crustal Scales with No Temperature Effects: Solutions Expressed			
		Global Coordinate System		
	7.1	Derivation of Inverse Mappings between the Elliptical and the		
		Cartesian Coordinate Systems 109		
	7.2	The Long Axis of an Elliptical Inclusion Is Parallel to the Inflow		
		in the Far Field		
	7.3	The Short Axis of an Elliptical Inclusion Is Parallel to the Inflow		
		in the Far Field		
	7.4	The Inflow of the Far Field Is Parallel to the X Direction of the		
		Global XY Coordinate System 117		
	7.5	The Inflow of the Far Field Is Parallel to the Y Direction		
		of the Global XY Coordinate System		
	7.6	Application Examples of the Present Analytical Solutions 121		
0	Dama	Ehuid Flow Forward Turnetiant Hast Twompfor within and		
8		Fluid Flow Focused Transient Heat Transfer within and		
		nd Two-Dimensional Faults and Cracks of Crustal Scales 133		
	8.1	Statement of the Problem		
	8.2	Validation of the Numerical Models		
	8.3	Numerical Simulation Results 138		
9	Convective Heat Transfer within Three-Dimensional Vertical Faults			
	Heate	ed from Below		
	9.1	Statement of the Problem		
	9.2	Analysis of Convective Instability of the Fault Zone System 150		
	9.3	Possibility of Convective Flow in Geological Fault Zone Systems . 156		
	-			

10	Convective Heat Transfer within Three-Dimensional Inclined				
	Fault	s Heated from Below 161			
	10.1	Governing Equations of the Problem			
	10.2	Analysis of Convective Instability of Pore-Fluid Flow			
		in an Inclined Three-Dimensional Fault Zone System			
	10.3	Effect of the Dip Angle on Convective Instability of an Inclined			
		Three-Dimensional Geological Fault Zone			
11	Doub	le-Diffusion Driven Convective Heat Transfer within			
	Thre	e-Dimensional Vertical Faults Heated from Below			
	11.1	Governing Equations of the Problem			
	11.2	Analysis of Double-Diffusion Driven Convective Instability for			
		Three-Dimensional Fault Zones			
	11.3	The Possibility of Double-Diffusion Driven Convective Flow in			
		Three-Dimensional Geological Fault Zones			
12	Convection Induced Ore Body Formation and Mineralization				
	withi	n the Upper Crust of the Earth 195			
	12.1	Statement of the Problem and the Concept of Mineralization Rate. 197			
	12.2	Precipitation and Dissolution of Zinc, Lead and Iron			
		in Hydrothermal Systems			
Sur	nmary	Statements			
Ref	erence	s			
Ind	ex				