Contents

Introduction

<table>
<thead>
<tr>
<th>Chapter 1. The Skew Field of Quaternions</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Definition of the Field of Quaternions \mathbb{H} and Elementary Formulae</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Embeddings of \mathbb{C} into the Quaternions and Natural Unitary Groups</td>
<td>7</td>
</tr>
<tr>
<td>1.3. \mathbb{C}-linear Structures, Symplectic Structures and Orientation, Pauli Elements</td>
<td>9</td>
</tr>
<tr>
<td>1.4. Inner Automorphisms of \mathbb{H}</td>
<td>12</td>
</tr>
<tr>
<td>1.5. The Oriented Rotation Angle of the Inner Automorphism with Respect to the Natural Minkowski Metric</td>
<td>18</td>
</tr>
<tr>
<td>1.6. Link between Space-Time Geometry and Euclidean Geometry on the Quaternions</td>
<td>20</td>
</tr>
</tbody>
</table>

Chapter 2. Elements of the Geometry of S^3, Hopf Bundles and Spin Representations

2.1. One-Parameter Groups of SU(2) and SO(E)	25
2.2. Parallels of Latitude and Meridians on S^3	27
2.3. One-Parameter Subgroups of SU(2) and Hopf Bundles	28
2.4. Spin Representations	40
2.5. The Infinitesimal Spin$^\frac{1}{2}$-Representation	43

Chapter 3. Internal Variables of Singularity Free Vector Fields in a Euclidean Space

3.1. The Complex Line Bundle \mathbb{F}^a	47
3.2. Symplectic and Hermitian Structures on \mathbb{F}^a	52
3.3. Gradient Fields	54
3.4. Curvature Forms on Level Surfaces	56
3.5. Vector Fields Defined by Two-Forms	58
3.6. The Principal bundle $\tilde{\mathbb{F}}^a$ and its Natural Connection Form	60
3.7. The Characteristic Principal Bundle	65
3.8. Horizontal and Periodic Lifts of Integral Curves	69

Chapter 4. Isomorphism Classes, Chern Classes and Homotopy Classes of Singularity Free Vector Fields in 3-Space

4.1. Isomorphism Classes of Characteristic Principal Bundles of Vector Fields	73
4.2. The Structure of Isomorphism Classes	77
4.3. Chern Classes	80
4.4. Mapping Degree and First Chern–de Rham Classes	94
4.5. Hodge-Morrey Decomposition	100
Chapter 5. Heisenberg Algebras, Heisenberg Groups, Minkowski Metrics, Jordan Algebras and SL(2, C) 107
5.1. Natural Symplectic Structure on a Plane in 3-Space 107
5.2. The Notion of a Heisenberg Algebra 112
5.3. Heisenberg Group and its Lie Algebra 115
5.4. \mathfrak{h}_r^α as a Semi-direct Product 119
5.5. A Heisenberg Algebra Structure on $\operatorname{sp}(F)$ 121
5.6. The Spin Group and the Skew Field of Quaternions are Determined by Only One Heisenberg Group 124
5.7. Scalar Products and Minkowski Metrics on the Heisenberg Algebra 126
5.8. Symplectic Group, Special Linear Groups and Lorentz group 128

Chapter 6. The Heisenberg Group and Natural C^*-Algebras of a Vector Field in 3-Space 131
6.1. The Heisenberg Group Bundle of a Vector Field 132
6.2. Infinite Dimensional Heisenberg Algebras and Infinite Dimensional Heisenberg Groups of Vector Fields 135
6.3. Maps Determined by Homomorphisms 140
6.4. Group Algebras of Infinite Dimensional Heisenberg Groups 143
6.5. The C^*-Group Algebra and the Twisted Convolution, the Weyl Algebra and the Poisson Algebra 153

Chapter 7. The Schrödinger Representation and the Metaplectic Representation 161
7.1. Definition of the Schrödinger Representation and Phase Space 161
7.2. Characteristic Ingredients of the Schrödinger Representation 166
7.3. The Infinitesimal Schrödinger Representation and Phase Space 175
7.4. Projective Representations of the Symplectic Group Constructed via the Schrödinger Representation 176
7.5. A Realization of the Metaplectic Group and the Metaplectic Representation 180

Chapter 8. The Heisenberg Group: A Basic Geometric Background of Signal Analysis and Geometric Optics 191
8.1. The Notion of a Signal 192
8.2. Time-Frequency Analysis and the Uncertainty Principle 193
8.3. Further Tools of Time-Frequency Analysis 196
8.4. Reconstruction Formulae 201
8.5. The Geometry Underlying Time-Frequency Analysis 202
8.6. The Radar Ambiguity Function 204
8.7. The Stone-von Neumann Theorem in Time-Frequency Analysis 205
8.8. Geometric Optics 206
8.9. Holography 210

Chapter 9. Quantization of Quadratic Polynomials 215
9.2. Preservation of Information 217
9.3. The Poisson Algebra of all Homogeneous Quadratic Polynomials in Two Variables 221
9.4. The Quantization of Inhomogeneous Quadratic Polynomials 230
9.5. The Schrödinger Equation 237
9.6. State Spaces and Observables, Elements of Stochastic Interpretation 238

Chapter 10. Field Theoretic Weyl Quantization of a Vector Field in 3-Space 247
10.1. The Mathematical Setting 247
10.2. The Idea of Weyl Quantization of X 248
10.3. Weyl Quantization of Singularity Free Vector Fields in 3-Space 251
10.4. The Relation to the GNS Representation 258
10.5. The Influence of the Topology on the Weyl Quantization 263

Appendix A. Thermodynamics, Geometry and the Heisenberg Group by Serge Preston 269
A.1. Introduction 269
A.2. The Contact Structure of Homogeneous Thermodynamics 270
A.4. Thermodynamical Metrics of Weinhold and Ruppeiner 271
A.5. Indefinite Thermodynamical Metric G of R. Mrugala 272
A.7. Curvature Properties of G 274
A.8. The Heisenberg Group as the Thermodynamical Phase Space 275
A.9. Geodesics of the Metric G 279
A.10. Symplectization of the Manifold (P, θ, G) 281
A.11. Properties of the Metric \tilde{G} 282
A.12. Constitutive Hypersurface and its Lift to \tilde{P} 283
A.13. Hyperbolic Rotations and the Projectivization of \tilde{P} 284
A.14. Group Action of \mathcal{H}_n and the “Partial Orbit Structure” of \tilde{P} 285

Appendix. Bibliography 289

Bibliography 291

Index 295