I. INTRODUCTION

§ 1. 7	The Subject-Matter	r.		•	•	•	. 1
§ 2. '	The Method of Pre	sentation	•	•	•	•	. 7
§ 3. 🤇	The Point of View	•	•	•	•	•	. 9
	II. THE SPI	ECIAL TH	EORY	OF RE	LATIV	ITY	
Part I.	THE TWO POSTU	LATES AND	THE LOR	ENTZ T	RANSFOR	MATION	
§ 4.	Introduction .	•		•	•	•	. 12
	The First Postula			•	•	•	. 12
	The Second Postu			•	•	•	. 15
•	Necessity for Mod				ice and I	lime	. 17
	The Lorentz Tran				•	<u>.</u>	. 18
§ 9.	Transformation E				emporal	Interval	
	Lorentz Contrac				•	•	. 22
	Transformation E				•	•	. 25
	Transformation E				itraction	ractor	
§ 12.	Transformation E	quations to	r Acceler	ation	•	•	. 27
Part II	. TREATMENT OF	SPECIAL R	ELATIVIT	Y WITH	THE H	ELP OF	A
	UR-DIMENSIONAL						
8 13.	The Space-Time (Continuum				_	. 28
	The Three Plus O		ons of Sr	ace-Tin	10		. 29
•	The Geometry Co		-				. 30
	The Signature of the				e Kinds d	of Interv	al 31
	The Lorentz Rote					•	. 32
	The Transformati						. 33
§ 19.	Use of Tensor An	alysis in the	• Theory	of Rela	tivity		. 34
§ 20.	Simplification of T	Censor Analy	vsis in the	Case of	Special F	Relativit	у.
	Galilean Coordin		•	•	•	•	. 37
§ 21.	Correspondence o			Treatm	ent with	the Po	S-
	tulates of Specia	l Relativity	•	•	•	•	. 39
	III. SPECIAL	ידי איזי דער	TTINX .	A NTTN M	TROLET & N	ITAG	
				and m	ECHAP	108	
	THE DYNAMICS (
	The Principles of			Mass ar	nd Mome	\mathbf{ntum}	. 42
	The Mass of a Mo			•	•	•	. 43
§ 24.	The Transformati	on Equatio	ns for Ma	lss	•	•	. 45
	The Definition an		nation E	quations	s for For	ce	. 45
	Work and Kinetic		<u>.</u>	•	•	•	. 47
	The Relations bet						. 48
	Four-Dimensional				es of a P	article	. 50
9 Z9.	Applications of th	e Dynamic	s of a Pa	rticle	•	•	. 53
	(a) The Mass of (h) The Relation	r rign-velo	CITY Elec	trons	•	•	. 53
	(b) The Relation					•	. 54
	(c) Application	s in Liectro	magnetic	Theory	7.	• •	. 55
	(d) Tests of the	Tutellelatic	n or mas	s, Energ	y, and N	lomentu	m 57

Part II. THE DYNAMICS OF A CONTINUOUS MECHANICAL MEDIUM	
§ 30. The Principles Postulated .	59
§ 31. The Conservation of Momentum and the Components of Stress t_{ii}	60
§ 32. The Equations of Motion in Terms of the Stresses t_{ij} .	60
§ 33. The Equation of Continuity	62
§ 34. The Transformation Equations for the Stresses t_{ii} .	62
§ 35. The Transformation Equations for the Densities of Mass and	
Momentum	65
§ 36. Restatement of Results in Terms of the (Absolute) Stresses p_{ii} .	69
§ 37. Four-Dimensional Expression of the Mechanics of a Continuous	
Medium	70
§ 38. Applications of the Mechanics of a Continuous Medium	73
(a) The Mass and Momentum of a Finite System .	74
(b) The Angular Momentum of a Finite System .	77
(c) The Right-Angled Lever as an Example	79
(d) The Complete Static System	80
IV. SPECIAL RELATIVITY AND ELECTRODYNAMICS	
Part I. ELECTRON THEORY	
§ 39. The Maxwell-Lorentz Field Equations .	84
§ 40. The Transformation Equations for E, H, and ρ	86
§ 41. The Force on a Moving Charge	88
§ 42. The Energy and Momentum of the Electromagnetic Field	89
§ 43. The Electromagnetic Stresses .	91
§ 44. Transformation Equations for Electromagnetic Densities and	•-
Stresses	92
§ 45. Combined Result of Mechanical and Electromagnetic Actions .	93
§ 46. Four-Dimensional Expression of the Electron Theory .	95
(a) The Field Equations	95
(b) Four-Dimensional Expression of Force on Moving Charge	98
(c) Four-Dimensional Expression of Electromagnetic Energy-	
Momentum Tensor	99
§ 47. Applications of the Electron Theory	99
Part II. MACROSCOPIC THEORY	
§ 48. The Field Equations for Stationary Matter	101
	101
§ 49. The Constitutive Equations for Stationary Matter	102
§ 50. The Field Equations in Four-Dimensional Language	102
§ 51. The Constitutive Equations in Four-Dimensional Language .	104
§ 52. The Field Equations for Moving Matter in Ordinary Vector	105
Language § 53. The Constitutive Equations for Moving Matter in Ordinary	105
	109
Vector Language	108 109
(a) The Conservation of Electric Charge	109
(b) Boundary Conditions	109
(c) The Joule Heating Effect	112
(d) Electromagnetic Energy and Momentum	112
	115
(e) The Energy-Momentum Tensor	115
() Applications to traportinonital Observations	110

viii

V. SPECIAL RELATIVITY AND THERMODYNAMICS

Part I. THE THERMODYNAMICS OF STATIONARY SYSTEMS

§ 55. Introduction	•		118
§ 56. The First Law of Thermodynamics and the Zero	Point of I	Energy	
Content		•	120
§ 57. The Second Law of Thermodynamics and the S	tarting-Po	int for	
Entropy Content			121
§ 58. Heat Content, Free Energy, and Thermodynam	nic Potenti	ial .	123
§ 59. General Conditions for Thermodynamic Change			125
§ 60. Conditions for Change and Equilibrium in Homo	geneous S	ystems	127
§ 61. Uniformity of Temperature at Thermal Equilib	rium .	•	130
§ 62. Irreversibility and Rate of Change			132
§ 63. Final State of an Isolated System			134
§ 64. Energy and Entropy of a Perfect Monatomic G	as .	•	136
§ 65. Energy and Entropy of Black-Body Radiation		•	139
§ 66. The Equilibrium between Hydrogen and Helium	m.	•	140
§ 67. The Equilibrium between Matter and Radiation	n.	•	146

Part II. THE THERMODYNAMICS OF MOVING SYSTEMS

§ 68.	The T	'wo Law	s of T	hermody	namic	s for a M	Ioving S	ystem		152
§ 69.	The I	lorentz 7	fransf	ormation	for T	hermody	namic Q	uantities		153
	(a)	Volume	and I	ressure	•	•	•	•		153
	(b)	Energy	•	•				•	•	154
	(c)	Work	•	•	*	•		•	•	156
	(d)	Heat	•	•	•	•	•	-	•	156
	(e)	Entropy	7	•		•	•	•	•	157
		Temper		•	•	•	•	•	•	158
§ 70.	Therr	nodynan	nic Ap	plication	s.	•	•	•	•	159
	(a)	Carnot (Cycle	Involvin	g Char	ige in Ve	elocity	•	•	159
				s of The				•	•	161
§ 71.	Use o	f Four-I	Dimens	sional La	nguag	e in The	rmodyna	mics	•	162

VI. THE GENERAL THEORY OF RELATIVITY

Part I. THE FUNDAMENTAL PRINCIPLES OF GENERAL RELATIVITY

§72. Introduction	165
§ 73. The Principle of Covariance	166
(a) Justification for the Principle of Covariance	166
(b) Consequences of the Principle of Covariance	167
(c) Method of Obtaining Covariant Expressions	168
(d) Covariant Expression for Interval	169
(e) Covariant Expression for the Trajectories of Free Particles	3
and Light Rays	. 171
§ 74. The Principle of Equivalence	174
(a) Formulation of the Principle of Equivalence. Metric and	l
Gravitation	. 174
(b) Principle of Equivalence and Relativity of Motion	176
(c) Justification for the Principle of Equivalence	. 179

(d) Use of the Principle of Equivalence in Generalizing the	
Principles of Special Relativity. Natural and Proper	
Coordinates	180
(e) Interval and Trajectory in the Presence of Gravitational	
Fields	181
§ 75. The Dependence of Gravitational Field and Metric on the Dis-	
tribution of Matter and Energy. Principle of Mach .	184
§ 76. The Field Corresponding to the Special Theory of Relativity.	
The Riemann-Christoffel Tensor	185
§ 77. The Gravitational Field in Empty Space. The Contracted	200
Riemann-Christoffel Tensor	187
§ 78. The Gravitational Field in the Presence of Matter and Energy.	188
§ 78. The chavitational Fleid in the Flesence of matter and Energy.	100
Part II. ELEMENTARY APPLICATIONS OF GENERAL RELATIVITY	
§ 79. Simple Consequences of the Principle of Equivalence .	192
(a) The Proportionality of Weight and Mass	192
(b) Effect of Gravitational Potential on the Rate of a Clock.	192
(c) The Clock Paradox	194
§ 80. Newton's Theory as a First Approximation .	198
(a) Motion of Free Particle in a Weak Gravitational Field .	198
(b) Poisson's Equation as an Approximation for Einstein's	
Field Equations	199
§ 81. Units to be Used in Relativistic Calculations .	201
§ 82. The Schwarzschild Line Element	202
§ 83. The Three Crucial Tests of Relativity .	205
(a) The Advance of Perihelion	208
(b) The Gravitational Deflexion of Light	209
(c) Gravitational Shift in Spectral Lines	203
(c) Gravitational binten opoetial Lines	411

VII. RELATIVISTIC MECHANICS

Part I. SOME GENERAL MECHANICAL PRINCIPLES	
§ 84. The Fundamental Equations of Relativistic Mechanics	214
§ 85. The Nature of the Energy-Momentum Tensor. General Expres-	
sion in the Case of a Perfect Fluid	215
§ 86. The Mechanical Behaviour of a Perfect Fluid	218
§ 87. Re-expression of the Equations of Mechanics in the Form of an	
Ordinary Divergence	222
§ 88. The Energy-Momentum Principle for Finite Systems .	225
§ 89. The Densities of Energy and Momentum Expressed as Diver-	
gences	229
§ 90. Limiting Values for Certain Quantities at a Large Distance from	
an Isolated System	23 0
§ 91. The Mass, Energy and Momentum of an Isolated System .	232
§ 92. The Energy of a Quasi-Static Isolated System Expressed by an	
Integral Extending Only Over the Occupied Space	234
Part II. SOLUTIONS OF THE FIELD EQUATIONS	
······································	
§ 93. Einstein's General Solution of the Field Equations in the Case	000
of Weak Fields	236
§ 94. Line Elements for Systems with Spherical Symmetry .	239

CONTENTS	xi
§ 95. Static Line Element with Spherical Symmetry	241
§ 96. Schwarzschild's Exterior and Interior Solutions	245
§ 97. The Energy of a Sphere of Perfect Fluid	247
§ 98. Non-Static Line Elements with Spherical Symmetry	250
§ 99. Birkhoff's Theorem	252
§ 100. A More General Line Element	253
TITE DIT AMERICA DI DOMDODITI AMERI	
VIII. RELATIVISTIC ELECTRODYNAMICS	
Part I. THE COVARIANT GENERALIZATION OF ELECTRICAL THEORY	
§ 101. Introduction	258
§ 102. The Generalized Lorentz Electron Theory. The Field Equa-	
tions	258
§ 103. The Motion of a Charged Particle	259
§ 104. The Energy-Momentum Tensor	261
§ 105. The Generalized Macroscopic Theory	261
Part II. SOME APPLICATIONS OF RELATIVISTIC ELECTRODYNAMICS	
§ 106. The Conservation of Electric Charge	264
§ 107. The Gravitational Field of a Charged Particle	265
§ 108. The Propagation of Electromagnetic Waves	267
§ 109. The Energy-Momentum Tensor for Disordered Radiation .	269
§ 110. The Gravitational Mass of Disordered Radiation	271
§ 111. The Energy-Momentum Tensor Corresponding to a Directed	L
Flow of Radiation	272
§ 112. The Gravitational Field Corresponding to a Directed Flow of	E
Radiation	273
§ 113. The Gravitational Action of a Pencil of Light	274
(a) The Line Element in the Neighbourhood of a Limited	L
Pencil of Light	274
(b) Velocity of a Test Ray of Light in the Neighbourhood of	f
the Pencil	275
(c) Acceleration of a Test Particle in the Neighbourhood of	E
the Pencil	277
§ 114. The Gravitational Action of a Pulse of Light	279
(a) The Line Element in the Neighbourhood of the Limited	l I
Track of a Pulse of Light	279
(b) Velocity of a Test Ray of Light in the Neighbourhood of	f
the Pulse	. 281
(c) Acceleration of a Test Particle in the Neighbourhood of	f
the Pulse	.282
§ 115. Discussion of the Gravitational Interaction of Light Rays and	
Particles	. 285
§ 116. The Generalized Doppler Effect	. 288
1X. RELATIVISTIC THERMODYNAMICS	
Part I. THE EXTENSION OF THERMODYNAMICS TO GENERAL RELATIVE	TY
§ 117. Introduction	. 291
§ 118. The Relativistic Analogue of the First Law of Thermodynamic	
§ 119. The Relativistic Analogue of the Second Law of Thermodynamics	
dynamics	. 293
	, 200

§ 120. On the Interpretation of the Relativistic Second Law of	000
Thermodynamics	296
§ 121. On the Interpretation of Heat in Relativistic Thermodynamics	297
§ 122. On the Use of Co-Moving Coordinates in Thermodynamic	
Considerations	301
Part II. APPLICATIONS OF RELATIVISTIC THERMODYNAMICS	
§ 123. Application of the First Law to Changes in the Static State of	
a System	304
§ 124. Application of the Second Law to Changes in the Static State	000
of a System	306
§ 125. The Conditions for Static Thermodynamic Equilibrium .	307
§ 126. Static Equilibrium in the Case of a Spherical Distribution of	
Fluid	308
§ 127. Chemical Equilibrium in a Gravitating Sphere of Fluid .	311
§ 128. Thermal Equilibrium in a Gravitating Sphere of Fluid .	312
§ 129. Thermal Equilibrium in a General Static Field	315
§ 130. On the Increased Possibility in Relativistic Thermodynamics	010
	010
for Reversible Processes at a Finite Rate	319
§ 131. On the Possibility for Irreversible Processes without Reaching	
a Final State of Maximum Entropy	326
§ 132. Conclusion	330

X. APPLICATIONS TO COSMOLOGY

Part I. STATIC COSMOLOGICAL MODELS

§ 133. Introduction	. 331
§ 134. The Three Possibilities for a Homogeneous Static Univ	erse . 333
§ 135. The Einstein Line Element	. 335
§ 136. The de Sitter Line Element	. 335
§ 137. The Special Relativity Line Element	. 336
§ 138. The Geometry of the Einstein Universe	. 337
§ 139. Density and Pressure of Material in the Einstein Unive	erse . 339
§ 140. Behaviour of Particles and Light Rays in the Einstein U	Jniverse 341
§ 141. Comparison of Einstein Model with Actual Universe .	. 344
§ 142. The Geometry of the de Sitter Universe	. 346
§ 143. Absence of Matter and Radiation from the de Sitter U	Jniverse 348
§ 144. Behaviour of Test Particles and Light Rays in the d	e Sitter
Universe	. 349
(a) The Geodesic Equations	. 349
(b) Orbits of Particles	. 351
(c) Behaviour of Light Rays in the de Sitter Univer-	se . 353
(d) Doppler Effect in the de Sitter Universe .	. 354
§ 145. Comparison of de Sitter Model with Actual Universe .	. 359
Part II. THE APPLICATION OF RELATIVISTIC MECHANICS TO STATIC HOMOGENEOUS COSMOLOGICAL MODELS	0 NON-
§ 146. Reasons for Changing to Non-Static Models .	. 361
§ 147. Assumption Employed in Deriving Non-Static Line El	ement. 362

	1	
-	•	-

§ 148. Derivation of Line Element from Assumption of Spatial	
Isotropy	364
§ 149. General Properties of the Line Element	370
(a) Different Forms of Expression for the Line Element .	370
(b) Geometry Corresponding to Line Element	371
(c) Result of Transfer of Origin of Coordinates	372
(d) Physical Interpretation of Line Element	375
§ 150. Density and Pressure in Non-Static Universe	376
§ 151. Change in Energy with Time	379
§ 152. Change in Matter with Time	381
§ 153. Behaviour of Particles in the Model	383
§ 154. Behaviour of Light Rays in the Model	387
§ 155. The Doppler Effect in the Model	389
§ 156. Change in Doppler Effect with Distance	392
§ 157. General Discussion of Dependence on Time for Closed Models	394
(a) General Features of Time Dependence, R real, $\rho_{00} \ge 0$,	
$p_0 \geqslant 0$	395
(b) Curve for the Critical Function of R	396
(c) Monotonic Universes of Type M_1 , for $\Lambda > \Lambda_F$.	399
(d) Asymptotic Universes of Types A_1 and A_2 , for $\Lambda = \Lambda_E$	400
(e) Monotonic Universes of Type M_2 and Oscillating Uni-	
verses of Types O_1 and O_2 , for $0 < \Lambda < \Lambda_E$.	401
(f) Oscillating Universes of Type O_1 , for $\Lambda \leq 0$.	402
§ 158. General Discussion of Dependence on Time for Open Models .	403
§ 159. On the Instability of the Einstein Static Universe .	405
§ 160. Models in Which the Amount of Matter is Constant .	407
§ 161. Models Which Expand from an Original Static State .	409
§ 162. Ever Expanding Models Which do not Start from a Static	
State	412
§ 163. Oscillating Models ($\Lambda = 0$) .	412
§ 164. The Open Model of Einstein and de Sitter $(\Lambda = 0, R_0 = \infty)$.	415
§ 165. Discussion of Factors which were Neglected in Studying Special	
Models	416
Part III. THE APPLICATION OF RELATIVISTIC THERMODYNAMICS TO	
NON-STATIC HOMOGENEOUS COSMOLOGICAL MODELS	
§ 166. Application of the Relativistic First Law	420
§ 167. Application of the Relativistic Second Law	421
§ 168. The Conditions for Thermodynamic Equilibrium in a Static	
Einstein Universe	423
§ 169. The Conditions for Reversible and Irreversible Changes in Non-	
Static Models	424
§ 170. Model Filled with Incoherent Matter Exerting No Pressure as	
an Example of Reversible Behaviour	426
§ 171. Model Filled with Black-Body Radiation as an Example of	
Reversible Behaviour	427
§ 172. Discussion of Failure to Obtain Periodic Motions without	
Singular States	429
§173. Interpretation of Reversible Expansions by an Ordinary	
Observer	432

xiii

§ 174.	Analytical Treatment of a Succession	of Exps	nsions a	and Cor	1-
-	tractions for a Closed Model with Λ =	=0.			. 435
	(a) The Upper Boundary of Expans	ion .			. 436
	(b) Time Necessary to Reach Maxim				. 436
	(c) Time Necessary to Complete Cor		n	•	. 437
	(d) Behaviour at Lower Limit of Co				. 438
8 175.	Application of Thermodynamics to a S			wersib	-
3 - 10.	Expansions and Contractions .				. 439
		•		•	• • • • •
Part II	V. CORRELATION OF PHENOMENA IN		TAT T	NIVEDS	ъ
	TH THE HELP OF NON-STATIC HOMOGEN			111 1 10100	12
		ALOUS N	101012020		
•	Introduction			•	. 445
§ 177.	. The Observational Data		,	•	. 446
	(a) The Absolute Magnitudes of the				. 446
	(b) The Corrected Apparent Magni	tudes f	or more) Distan	ıt
	Nebulae			•	. 448
	(c) Nebular Distances Calculated from				
	(d) Relation of Observed Red-Shift	t to Mag	nitude	and Dis	s-
	tance		•	•	. 454
	(e) Relation of Apparent Diameter	to Ma	gnitude	and Di	8-
	tance			•	. 457
	(f) Actual Diameters and Masses of	f Nebula	le	•	. 458
	(g) Distribution of Nebulae in Space	Ð .		•	. 459
	(h) Density of Matter in Space .	•		•	. 461
§ 178.	. The Relation between Coordinate Posi	ition and	d Lumii	\mathbf{nosity}	. 462
§ 179.	. The Relation between Coordinate Posi	tion and	1 Astron	iomicall	ly
Ũ	Determined Distance				. 465
§ 180.	. The Relation between Coordinate I	Position	and .	Apparer	nt
5	Diameter				. 467
\$ 181.	. The Relation between Coordinate P	osition	and C	ounts o	of
3 ~	Nebular Distribution				. 468
\$ 182	. The Relation between Coordinate Posi	ition and	I Red.s	hift.	. 469
	. The Relation of Density to Spatial Cur				
\$ 100.	Constant	valuit	mu oos	mongica	. 473
\$ 194	. The Relation between Red-shift and F	Poto of 1	Diaonno	•	•
§ 104.	Matter	vale of 3	Disappe	arance	. 475
C 105		Madal		• • • • • • • • • • • • • • • • • • • •	
8 199.	. Summary of Correspondences between	t model	and Ac	tual Un	u- . 478
6 100	verse		•	• • • •	. 470
§ 180.	. Some General Remarks Concerning Co	smologi	cal Moc	leis	• • • • •
	(a) Homogeneity	•	•	•	. 482
	(b) Spatial Curvature	•	•	•	. 483
	(c) Temporal Behaviour .		•	•	. 484
§ 187.	. Our Neighbourhood as a Sample of the	e Unive	rse as a	Whole	. 486
Append	dix I. symbols for quantities				
- FF					

Scalar Quantities .

			xv					
Appendix II. se	•	•	491					
Appendix III. s	SOME FORM	ULAE O	F TENSO	OR ANAI	LYSIS			
(a) General No	otation				•	•		493
(b) The Funda	mental Me	trical Te	ensor an	d its Pı	roperties	•		494
(c) Tensor Mai	nipulations	•	•		•	•		495
(d) Miscellaneo	ous Formula	ae .	•					496
(e) Formulae 1	Involving T	'ensor D	ensities	•	•		•	496
(f) Four-Dime	nsional Vo	lume. P	roper S	patial V	olume	•	•	496
Appendix IV. v	SEFUL CON	ISTANTS	•	•	•	•	•	497
Subject Index	•	•	•	•	•	•	•	499
Name Index .		•	•		•			502