Contents

P	Preface page xi		
1	Inti	roduction	1
	1.1	Cloud and precipitation physics and parameterization perspective	1
	1.2	Types of microphysical parameterization models	2
		Warm-rain parameterizations	4
	1.4	Cold-rain and ice-phase parameterizations	5
		Hydrometeor characteristics overview	7
	1.6	Summary	17
2	Fou	indations of microphysical parameterizations	19
	2.1	Introduction	19
	2.2	Background	19
	2.3	Power laws	21
	2.4	Spectral density functions	23
	2.5	Gamma distributions	27
	2.6	Log-normal distribution	42
	2.7	Microphysical prognostic equations	51
	2.8	Bin microphysical parameterization spectra	
		and moments	57
3	Clo	ud-droplet and cloud-ice crystal nucleation	59
	3.1	Introduction	59
	3.2	Heterogeneous nucleation of liquid-water droplets	
		for bulk model parameterizations	61
	3.3	Heterogeneous liquid-water drop nucleation for bin model	
		parameterizations	68
	3.4	Homogeneous ice-crystal nucleation parameterizations	70
	3.5	Heterogeneous ice-crystal nucleation parameterizations	72

4	Satu	ration adjustment	78
	4.1	Introduction	78
	4.2	Liquid bulk saturation adjustments schemes	81
	4.3	Ice and mixed-phase bulk saturation adjustments schemes	86
	4.4	A saturation adjustment used in bin microphysical	
		parameterizations	91
	4.5	Bulk model parameterization of condensation from a	
		bin model with explicit condensation	93
	4.6	The saturation ratio prognostic equation	97
5	Vap	or diffusion growth of liquid-water drops	101
	5.1	Introduction	101
	5.2	Mass flux of water vapor during diffusional growth	
		of liquid-water drops	102
	5.3	Heat flux during vapor diffusional growth of liquid water	106
	5.4	Plane, pure, liquid-water surfaces	109
	5.5	Ventilation effects	116
	5.6	Curvature effects on vapor diffusion and Kelvin's law	118
	5.7	Solute effects on vapor diffusion and Raoult's law	120
	5.8	Combined curvature and solute effects and the Kohler curves	121
	5.9	Kinetic effects	122
	5.10	Higher-order approximations to the mass tendency equation	124
		Parameterizations	129
	5.12	Bin model methods to vapor-diffusion mass gain and loss	134
	5.13	Perspective	138
6	Vapo	or diffusion growth of ice-water crystals and particles	139
	6.1	Introduction	139
	6.2	Mass flux of water vapor during diffusional growth	
		of ice water	140
	6.3	Heat flux during vapor diffusional growth of ice water	141
	6.4	Plane, pure, ice-water surfaces	141
	6.5	Ventilation effects for larger ice spheres	142
	6.6	Parameterizations	143
	6.7	Effect of shape on ice-particle growth	148
7	Colle	ection growth	152
		Introduction	152
	7.2	Various forms of the collection equation	153
	7.3	Analysis of continuous, quasi-stochastic, and pure-stochastic	
		growth models	155

.

		Contents	1X
	7.4	Terminal velocity	164
	7.5	Geometric sweep-out area and gravitational sweep-out	
		volume per unit time	165
	7.6	Approximate polynomials to the gravitational collection	
		kernel	165
	7.7	The continuous collection growth equation as a two-body	
		problem	166
	7.8	The basic form of an approximate stochastic	
		collection equation	168
	7.9	Quasi-stochastic growth interpreted by Berry and Reinhardt	169
		Continuous collection growth equation parameterizations	173
		Gamma distributions for the general collection equations	177
		Log-normal general collection equations	183
		Approximations for terminal-velocity differences	188
		Long's kernel for rain collection cloud	191
		Analytical solution to the collection equation	194
		Long's kernel self-collection for rain and cloud	195
		Analytical self-collection solution for hydrometeors	196
	7.18	Reflectivity change for the gamma distribution owing	105
		to collection	197
	7.19	Numerical solutions to the quasi-stochastic collection	100
	~ ~	equation	198
	7.20	Collection, collision, and coalescence efficiencies	222
8	Drop) breakup	231
	8.1	Introduction	231
	8.2	Collision breakup of drops	232
	8.3	Parameterization of drop breakup	234
9	Auto	conversions and conversions	253
-		Introduction	253
	9.2	Autoconversion schemes for cloud droplets to drizzle	
		and raindrops	255
	9.3	Self-collection of drizzle drops and conversion of drizzle	
		into raindrops	264
	9.4	Conversion of ice crystals into snow crystals and	
		snow aggregates	264
	9.5	Conversion of ice crystals and snow aggregates into	
		graupel by riming	267
	9.6	Conversion of graupel and frozen drops into small hail	270

	9.7	Conversion of three graupel species and frozen drops amongst each other owing to changes in density by collection	
		of liquid particles	271
	9.8	Heat budgets used to determine conversions	272
		Probabilistic (immersion) freezing	278
		Immersion freezing	283
		Two- and three-body conversions	283
		Graupel density parameterizations and density prediction	289
		Density changes in graupel and frozen drops collecting	
		cloud water	290
	9.14	Density changes in graupel and frozen drops collecting	
		drizzle or rain water	290
	9.15	More recent approaches to conversion of ice	291
10	Hail	growth	293
		Introduction	293
	10.2	Wet and spongy hail growth	297
	10.3	Heat-budget equation	298
	10.4	Temperature equations for hailstones	301
	10.5	Temperature equation for hailstones with heat storage	302
	10.6	Schumann-Ludlam limit for wet growth	304
	10.7	Collection efficiency of water drops for hail	306
	10.8	Hail microphysical recycling and low-density riming	307
11	Melt	ing of ice	312
	11.1	Introduction	312
	11.2	Snowflakes and snow aggregates	313
	11.3	Graupels and hailstones	313
		Melting of graupel and hail	315
	11.5	Soaking and liquid water on ice surfaces	326
		Shedding drops from melting hail or hail in wet growth	328
	11.7	Parameterization of shedding by hail particles	
		of 9–19 mm	330
	11.8	Sensitivity tests with a hail melting model	333
12		ophysical parameterization problems and solutions	336
		Autoconversion of cloud to drizzle or rain development	336
		Gravitational sedimentation	338
		Collection and conversions	340
		Nucleation	343
	12.5	Evaporation	344

.

X

Contents	xi
12.6 Conversion of graupel and frozen drops to hail	344
12.7 Shape parameter diagnosis from precipitation equations	345
13 Model dynamics and finite differences	
13.1 One-and-a-half-dimensional cloud model	346
13.2 Two-dimensional dynamical models	348
13.3 Three-dimensional dynamical model	355
Appendix	
References	
Index	