Table of Contents

Preface							
Foreword							
List	t of S	ymbols		xvii			
1	INTRODUCTION						
	1.1	Defini	itions	6			
		1.1.1	Chemical reactivity and speciation	6			
		1.1.2	Measurement of different forms of M in natural				
			media (labile and inert complexes)	7			
		1.1.3	Determination of complexing agent properties				
			and concentrations	9			
	1.2	Limita	ations of Current Models and Methods	10			
	1.3	Measu	ring the Reactivity of Environmental Components:				
		A Nev	v Perspective of Analytical Chemistry	11			
2	THE	COMP	ONENTS OF AQUATIC SYSTEMS AND THEIR				
	REACTIVITY						
	2.1	Classif	fication of Water Components	16			
		2.1.1	Well-characterized compounds and homologous				
			compound groups	18			

	2.1.2	Complexing compounds 1		
	2.1.3	Dissolve	d components and suspended particles	22
	2.1.4	Characte	erization of complicated mixtures by	
		distribu	tion spectra	23
		2.1.4.1	Size distributions	24
		2.1.4.2	Analytical 'windows' and average measured	
			parameters	31
		2.1.4.3	Distribution of chemical properties at	
			equilibrium	32
		2.1.4.4	Distribution of kinetic properties	35
2.2	Conce	ntration	of Organic and Inorganic Compounds	37
	2.2.1	Organic	compounds	37
	2.2.2	Inorgani	ic compounds	41
2.3	Basic I	Principles	of Metal Reactivity in Water	47
	2.3.1	Reactivi	ty with suspended solid surfaces	48
	2.3.2	Reactivi	ty with dissolved inorganic ligands	52
		2.3.2.1	Distribution of complexed forms in model water	
			systems	52
		2.3.2.2	Distribution of elements between their various	
			oxidation states	57
		2.3.2.3	Trace metal classification	59
	2.3.3	Reactivi	ty with polyfunctional complexing agents	60
		2.3.3.1	Softness and hardness of metals and ligands	64
		2.3.3.2	Stereochemical factors	65
		2.3.3.3	Hydration properties of macromolecules and	
			colloids	65
		2.3.3.4	Polyelectrolyte properties	69
		2.3.3.5	Mixed complexes and intramolecular bonds	69
		2.3.3.6	Micellization and aggregate formation	71
2.4	Relati	on Betwe	en Reactivity and Availability of Metals in	
	Aquat	ic Systen	IS	72
	2.4.1	Reactivi	ities of the different metal groups	72
	2.4.2	Ecocher	nical role of the various groups of aquatic	
		complex	king agents	75
	2.4.3	Overall	complexing ability of an aquatic system	7 7
	2.4.4	Importa	ince of kinetic factors	81
COM	DOGIT		ODICINI OF NATURAL ODCANIC MATTER	00
2 1	Dofini	tions and	Classification	90
5.1	2 1 1	Dringing	al types of NOM	01
	3.1.1	The NO	M of different aquatic systems	91 05
37	0.1.2	ic Organi	c Matter	95
5.2	321	Product	ion of NOM in pelagic zones	96
	377	Snatial	distribution of narticulate and dissolved NOM	90
	3.2.3	Evolutio	on of marine NOM	100
				100

ii

3

	3.2.4	Composition of marine NOM	103
		3.2.4.1 Composition of living organisms	103
		3.2.4.2 Particulate organic matter	105
		3.2.4.3 Dissolved organic matter	107
3.3	Pedog	enic Organic Matter	110
	3.3.1	Origin and fractionation of soil organic matter (SOM)	110
	3.3.2	Relationship between soil NOM (SOM) and aquatic	
		pedogenic NOM (POM)	112
	3.3.3	Nature of soil NOM	113
	3.3.4	NOM of rivers	118
3.4	Lake	Organic Matter	120
	3.4.1	Production of aquagenic NOM in freshwater	122
	3.4.2	Distinctions between aquagenic (AOM) and pedogenic	
		(POM) NOM	122
		3.4.2.1 C/N, C/O, C/H and C/S ratios	123
		3.4.2.2 POC/TOC ratio	124
		3.4.2.3 UV-absorption/DOC ratio	124
		3.4.2.4 Isotopic ratios	126
	3.4.3	Evolution of POM and AOM in lakes	127
	3.4.4	Composition of lake NOM	132
3.5	Impor	rtance of Local Environments and Transition Zones	136
	3.5.1	Coastal zones	137
	3.5.2	Estuaries	139
	3.5.3	Sediments	142
		3.5.3.1 Sedimentation of undegraded cellular debris	142
		3.5.3.2 Adsorption of NOM on inorganic particles	142
		3.5.3.3 Benthic decomposition	143
		3.5.3.4 Composition of sediment NOM	144
СНА	RACTE	ERISTICS OF AQUATIC ORGANIC COMPOUNDS	146
4.1	Charac	cterization and Fractionation of Major NOM Components	147
	4.1.1	Characterization and determination methods	147
	4.1.2	Fractionation of NOM	149
		4.1.2.1 Separation by size	149
		4.1.2.2 Separation on hydrophobic resins	151
		4.1.2.3 Separation by ion-exchange	151
4.2	Nature	e of Aquatic Proteins and Peptides	152
4.3	Aquat	ic Polysaccharides	154
	4.3.1	Origin	154
	4.3.2	Composition	158
	4.3.3	Properties	161
		4.3.3.1 Size	161
		4.3.3.2 Hydration	161
		4.3.3.3 Viscosity	163
		4.3.3.4 Charge	163

4

iii

4.4	Comp	osition of Refractory Organic Matter (ROM)			
	Origin	ating from Soil	163		
	4.4.1	Overall composition			
	4.4.2	Specific Compounds	165		
		4.4.2.1 Carbohydrates	168		
		4.4.2.2 Fatty acids	168		
		4.4.2.3 Hydrocarbons	169		
		4.4.2.4 Nitrogen-containing compounds	170		
		4.4.2.5 Sulphur-containing compounds	171		
		4.4.2.6 Phosphorus-containing compounds	171		
		4.4.2.7 Aromatic compounds	172		
4.5	Proper	rties of Soil Refractory Organic Matter (ROM)	173		
	4.5.1	Structure	173		
	4.5.2	Size and molecular weight	177		
		4.5.2.1 Interpretation of data	177		
		4.5.2.2 Molecular weight	178		
		4.5.2.3 Size	178		
		4.5.2.4 Relationships between molecular weight and			
		composition	179		
	4.5.3	Hydration	183		
	4.5.4	Aggregation	184		
4.6	Aquag	genic Refractory Organic Matter	187		
	4.6.1	Properties of AROM	187		
	4.6.2	Structure and synthesis of marine LAROM	190		
4.7	Sedim	entary Humic and Fulvic Fractions	192		

5	INT	ERPRE	TATION	OF COMPLEXATION EQUILIBRIA	195
	5.1	Introd	luction		195
		5.1.1	Principa	l properties of natural complexants	195
		5.1.2	Level of	interpretation of complexation reactions	198
		5.1.3	Symbol	5	200
	5.2	Comp	lexation b	by Simple Ligands	200
		5.2.1	Principle	es and definitions	200
			5.2.1.1	Equilibrium constants of complexes	200
			5.2.1.2	Balance equations	201
			5.2.1.3	Activity coefficients	202
		5.2.2	Experin	iental determination of equilibrium constants	203
			5.2.2.1	Definitions	203
			5.2.2.2	General principle of determination	205
			5.2.2.3	Cases where the ionic strength is constant	206
			5.2.2.4	Example I, 1:1 complexes between major ions	207
			5.2.2.5	Example II, formation of 1:n complexes	
				between a minor cation and a major ligand	207

	5.2.3	Theoret	tical calculation of complex distribution	209				
		5.2.3.1	Principles	209				
		5.2.3.2	Graphical representations	211				
		5.2.3.3	Limitations of thermodynamic modelling	216				
5.3	Specific Reactions of a Single Ion or Compound with							
	Ното	logous Co	omplexants	216				
	5.3.1	Principl	es and definitions	216				
		5.3.1.1	Internal and external variables	217				
		5.3.1.2	General formulation of the complexation					
			reaction	218				
		5.3.1.3	Influence of pH	219				
		5.3.1.4	Degree of site occupation: affinity spectra	220				
	5.3.2	Each sit	e affinity is independent of $\overline{\theta}$	224				
		5.3.2.1	Formation of 1:1 and 1:2 complexes with a					
			single type of site	225				
		5322	Formation of 1:1 complexes with $i \ge 1$	228				
	533	Site affi	inity varies with \overline{A} : interpretation using <i>a priori</i>	220				
	0.0.0	theoreti	ical models	236				
		5331	General considerations	236				
		5332	Purely electrostatic secondary interactions	238				
		5.5.5.2	- Principles	238				
			- Acid-base properties of metal oxides	225				
			- Acid-base properties of macromolecules	245				
			- Metal complexation by macromolecules	251				
		5222	The complement considered as a memory hit	251				
		5.5.5.5	listing at (col) where	255				
		5224	listinci (gel) phase	255				
		5.3.3.4	interpretation by means of arbitrary isotherms	0.50				
	6.0.4	D: 1	and arrinity spectra	258				
	5.3.4	Direct d	letermination of affinity spectra	266				
		5.3.4.1	Numerical resolution of Eq. (5.58)	266				
		5.3.4.2	Differential equilibrium functions	268				
		5.3.4.3	Relationships between theoretical representation	ns				
			and experimentally measured variables for					
	6		heterogeneous complexants	272				
5.4	Comp	etition Re	eactions	277				
	5.4.1	Non-spe	cific reactions; ion-exchange	279				
		5.4.1.1	Impenetrable colloidal particles	281				
		5.4.1.2	Flexible organic polyelectrolytes	282				
	5.4.2	Equilibr	ium quotients of competition reactions, and					
		retentio	n capacity	284				
	5.4.3	Specific	competition reactions on pure oxide surfaces	286				
		5.4.3.1	Principles	286				
		5.4.3.2	Cation complexation	288				
		5.4.3.3	Anion complexation	290				
		5.4.3.4	Formation of mixed surface complexes	292				

		5.4.4	Specific	competition reactions with polyfunctional	
			complex	ants	292
			5.4.4.1	Inorganic polyfunctional complexants	293
			5.4.4.2	Multi-metal/multi-site competition in organic	
				polyfunctional gels	296
	5.5	Choice	e of Interp	pretation Model	299
6	COM	IPLEXA	TION PR	OPERTIES OF HOMOLOGOUS	204
	CON	IPLEXA	NIS ANI	D CHOICE OF MEASURING METHODS	304
	6.1	Organ	ic Comple	xants	206
		6.1.1	Fulvic ar	na humic compounds	206
			6.1.1.1	Physical properties	200
			6.1.1.2	Acia-base properties	214
		(10	6.1.1.3	Complexing properties	222
		6.1.2	Proteins	and polysaccharides	322
		6.1.3	Cell wall	S	320
			6.1.3.1	Structure and physical properties	320
	()	τ.	6.1.3. 2	Complexing properties	329
	6.2	Inorga	inic Comp	ilexants	220
		6.2.1	Metal ox	sides and hydroxides	220
			0.2.1.1	Structure and physical properties	222
		(22	0.2.1.2	Chemical properties	222
	()	0.2.2 Nutri	Uther in	organic solids	220
	0.3	Natur	ai 20110-2	solution Systems	240
		0.3.1		ating of particles	241
			0.3.1.1	Adsorption energy	342
			0.3.1.2	Influence of organic coating on particle	216
		(22	C	properties	240
		0.3.2	Seaimen	115	252
	6.4	0.3.3 Vin et	SOIIS		352 254
	0.4	Kinet	Dete eru		254
		0.4.1		Concert principles	254
			0.4.1.1	General principles	254
			6412	Complexes with increasing solide	250
			9.4.1.5 6 A 1 A	Complexes with morganic solids	220
		612	0.4.1.4 Diffusio		250
		6.4.2	Classifia	in coefficients	359
	65	0.4.3 Come	Jevation N	Measurements in Complete A questie Medice	202
	0.5	Choic	nonation f	ods and Experimental Conditions	261
		6 5 1	Stratom	tor complexation measurements	304
		0.5.1	6511	The various approaches	265
			6510	The various approaches	303
			0.5.1.2	The various steps	30/

		6.5.2	Choice	of reaction interpretation model (step V)	371
		6.5.3	Choice	of methods and experimental conditions	372
			6.5.3.1	Equilibrium parameter measurements	373
			6.5.3.2	Role of kinetic factors	380
_					
7	EXP	ERIME	NTAL D	ETERMINATION OF THE IN SITU	20.4
	DIS	TRIBU	TION OF	CHEMICAL SPECIES	384
	7.1	Sampl	ling and P	retreatment	385
		7.1.1	Contam		385
		7.1.2	Sample	collection	38/
		7.1.3	Storage	; adsorption on containers	391
		/.1.4	Pretreat	ment	392
			7.1.4.1	Preconcentration	392
			7.1.4.2	Separation of particulate and dissolved	202
			7 1 4 2	compounds	393
		Distail	1.1.4.3	Separation of dissolved-compound groups	393
	1.2	Distrit	Dution Sc	nemes for Metals, based on Fractionation	395
		1.2.1	Fraction	Single entering achieves have d an size	396
			7.2.1.1	Single-criterion schemes based on size	390
			7.2.1.2	Single-criterion schemes based on complex	200
			7 2 1 2	ability Characterization	398
			7.2.1.3	Chromatographic fractionation	402
			7.2.1.4	Practionation by decomposition	403
		7 2 2	7.2.1.3	Multiple-criteria schemes	403
		1.2.2	Fracuor	Demoindee	405
			7.2.2.1	Principles Relationship between shemical fractionation	405
			1.2.2.2	and thermodynamic models	407
			7 2 2 2	Palationship batwan chamical fractionation	407
			1.2.2.3	and biological uptake	411
		773	Fraction	and biological uptake	412
	73	7.2.3 Diatai	Flacuoi	hemes based on Combination of Direct	412
	1.5	Magn	oution Sc	Case of Fe and S in outronbia lakes	415
		731	Principl	case of the and 5 in eutropine lakes	415
		7.3.1	Mathod	co ological scheme	413
		1.3.2	7321	Filtration (particle/colloid limit)	410
			7321	Differential pulse polarography (colloid/labile	420
			1.3.2.2	compounds limit)	121
		733	Results	compounds mint)	423
		1.5.5	Results		723
8	STU	DY OF	COMPLE	XATION PROPERTIES BY POTENTIO-	
	MET	RIC ME	THODS		427
	8.1	Genera	al Charact	eristics of Electrochemical Methods	427

vii

.

	8.2	Memb	rane Elect	trodes (ISEs)	433	
		8.2.1	Principle	es	437	
		8.2.2	Optimu	m conditions for direct measurement of $\{M\}$	439	
			8.2.2.1	Constancy of E_0	439	
			8.2.2.2	Interfacial equilibrium	441	
			8.2.2.3	Response time	443	
		8.2.3	Direct n	neasurement of the degree of complexation	445	
			8.2.3.1	Calibration in non-complexing media	446	
			8.2.3.2	Measurements in complexing media	447	
			8.2.3.3	Practical conditions for complexation		
				measurements	449	
			8.2.3.4	Optimal measurement conditions	455	
	8.3	Amalg	am Elect	rodes	456	
		8.3.1	Preparat	tion	456	
		8.3.2	Measure	ments in non-complexing media	457	
			8.3.2.1	Principles	457	
			8.3.2.2	Sensitivity limits	459	
		8.3.3	Applica	tion to complexation measurements	463	
			8.3.3.1	Examples	463	
			8.3.3.2	Influence of oxygen	465	
_						
9	STUDY OF COMPLEXATION PROPERTIES BY VOLTAM-					
	MEI			40/		
	9.1	Factor	rs Influen	cing Sensitivity in Non-complexing Media	468	
		9.1.1	Principl		468	
			9.1.1.1	Faradaic current—potential—time relationships	469	
			9.1.1.2	Interpretation of current-potential curves in	475	
			.	terms of concentration gradients	475	
		9.1.2	Principa	ll voltammetric methods	477	
			9.1.2.1	Electronic factors: conditioning and		
				measurement times	480	
			9.1.2.2	Mechanical and geometric factors	482	
			9.1.2.3	Chemical preconcentration on or into the		
				electrode	486	
	~ ~	9.1.3	Applica	tions to natural waters	489	
	9.2	Gener	al Phenor	mena Influencing Complexation Measurements	490	
		9.2.1	Nature	of the reactions studied	490	
		9.2.2	Nature	of secondary phenomena	492	
			9.2.2.1	Influence of electric field	493	
			9.2.2.2	Adsorption at the interface	495	
		000	9.2.2.3	influence of compound fluxes at the interface	500	
		9.2.3	Simple	systems and secondary phenomena: definitions	501	
		9.2.4	Reactio	on rates in simple systems	503	
			9.2.4.1	General principles	503	
			9.2.4.2	Signal measurement time	507	

			9.2.4.3	Reversibility and irreversibility	508
			9.2.4.4	Lability and inertness	515
	9.3	Comp	lexation	Measurements in 'Simple' Systems	519
		9.3.1	Labile s	systems	519
			9.3.1.1	Theoretical relationships	519
			9.3.1.2	Discussion	521
			9.3.1.3	Application of the DeFord and Hume method	
				with $D_{\rm M} = D_{\rm ML}$	522
			9.3.1.4	Labile slowly diffusing complexes	524
		9 .3.2	Chemic	ally inert systems	527
			9.3.2.1	Principles	527
			9.3.2.2	Measurement of K by variation in [L]	528
			9.3.2.3	Measurement of complexation capacity, C_c	531
		9.3.3	Slow sy	stems	531
	9.4	Quant	itative In	fluence of Secondary Phenomena	535
		9.4.1	Mixture	effect	535
		9.4.2	Surface	pH and complexation buffer capacities	536
			9.4.2.1	Reduction methods	537
			9.4.2.2	Reoxidation methods	538
		9.4.3	Ligand a	adsorption and adsorbed complex formation	542
			9.4.3.1	General principles	542
			9.4.3.2	Comparison of diffusion and adsorption rates	546
			9.4.3.3	System (M–PROM) forming soluble and	
				adsorbed complexes, studied by direct	
				reduction methods	548
			9.4.3.4	System (M-PROM) forming soluble and	
				adsorbed complexes, studied by ASV	555
	9.5	Choice	e of Optin	num Conditions	559
_					
10	STU	DY OF	COMPLE	EXATION PROPERTIES BY NON-ELECTRO-	
	CHE	MICAL	METHO	DS	563
	10.1	Choice	e of Meth	od	564
	10.2	Direct	Methods	Without Separation: Spectrometry	566
		10.2.1	Electron	i spin resonance (ESR)	566
		10.2.2	Fluores	cence	567
			10.2.2.1	Emission wavelength and intensity	567

10.2.2.2 Quenching effect

10.3 Methods Based on Direct Physical Separation

10.3.1 Membrane separation principles

10.2.2.3 Fluorescence polarization

10.2.2.5 Applications to aquatic complexants

10.3.1.1 Different modes of separation

10.2.2.4 Fluorescence lifetime

568

569

569

569

570

570

570

ix

	10.3.1.2 Ultrafiltration flux and retention coefficient	573
	10.3.1.3 Experimental methods and membranes	576
	10.3.2 Membrane separation: applications to equilibrium studies	578
	10.3.2.1 Dialysis	578
	10.3.2.2 Ultrafiltration with continuous reagent addition	578
	10.3.2.3 Ultrafiltration by the concentration method	579
	10.3.2.4 Influence of complex dissociation kinetics	580
	10.3.3 Membrane separation: factors influencing the retention	
	coefficient	585
	10.3.3.1 Electrostatic and hydration effects	586
	10.3.3.2 Steric effects	589
	10.3.3.3 Concentration polarization	589
	10.3.3.4 Other surface effects	591
	10.3.4 Size exclusion chromatography	591
	10.3.4.1 Separation principles	591
	10.3.4.2 Applications to complexation measurements	595
10.4	Chemical Competition Methods	597
	10.4.1 Chemical competition in solution	598
	10.4.1.1 Methods without separation (spectrometric	
	detection)	598
	10.4.1.2 Methods with separation	599
	10.4.2 Chemical competition with a solid phase	600
	10.4.2.1 Principles	600
	10.4.2.2 Solid phase characteristics and determination	
	of [M]	602
	10.4.2.3 Operating conditions and limitations	604
10.5	Biological Methods	606
	10.5.1 Measurements of complexation capacity	606
	10.5.2 Measurement of free ion activity	607
	10.5.3 Discussion	608
Appendix		611
Reference	2 5	636
Index		673