TABLE OF CONTENTS

Preface to the English fidition XV
Preface XVII
M. Pascal's division machine 1
0 Fundamental struetcres 7
1 Relations 9
2 Monoids 14
3 Words and languages 18
4 Free monoids 24
5 Semirings 27
6 Matrices 30
7 Lexicon of graph theory 33
8 Complexity and decidability 34
Solutions to the exercises 39
Notes \& references 46
The three stages of rationality
I The smplest possible machine. 49
1 What is an 'automaton'? 51
1.1 First definitions ‥ first examples 51
States, transitions, etc. - Computations, recognised Inguages cte. Transposition and left right duality
1.2 Basic constructions, basic properties 60
Union - Cartesian product Quotient (of a hanguage)
1.3 The graph perspective 06Thim automata The empty and the infinite Criteria for recognombil-ity
1.4 Some supplementary definitions 74Unambiguous antamata - Complete automata - Deterministic atz-tomatà - Autonata with spontarteons transitions
2 Rational languages 82
2.1 Rational operations 82
Product of languages .. Star of a haguage - Hational operations
2.2 Rational languages 86
2.3 Rational is recognisable 87
Normalised automata - Closure undor product and star -. Standard antomata
2.4 Recognisable is rational 94
The McNaughton-Yamada algorithm, or algorithm MNY.. The state elimination method - Solving equations
3 The functional perspective 101
3.1 From transitions to the transition function 102
3.2 Deterministic automata 104
Reformulation of the definition -- Determinisation - The case of one- letter alphabets - Complement of recognisable languages
3.3 Minimisation 111
The automaton of quotients of a language. is minimal - Compu- tation of the minimal automaton - Another minimisation method
3.4 Returin to the Star Lemma 118
Block iteration and block simplifcation - Ramsey's Theorem - Proof of Theorem 3.3
4 Rational expressions 123
4.1 Rational expressions and languages 124
Rational expressions over an alphabet Rational expressions over a set of variables
4.2 Rational identities 128
Classical identities \cdots A formal computation
4.3 Expressions for the behaviour of a finite automaton 133
The state elimination and equation solution methods - The BMC and MNY algorithms, identical orders ... The BMC and MNY algorithrms, distinct orders
4.4 Derivation of expressions 138
Derivatives of an expression \cdots A theorem of J. Drzozowski - Derivative antomatom
5 From expressions to automata 145
5.1 The standard antomaton of an expression 145
Direct consumation Thompson's construction
5.2 The derived term automaton 149
Derived terms - A theorem of V. Antimirov
5.3 String matching 152
Automaton for findiug a word - Searching by slidinge window - Iruple- mentetion with a default successor
6 Star height 157
6.1 Two heights and a degree 158
Star height of an expression - Star height of a language Loop com- piexity of an mutomaton
6.2 Eggan's Theorem 162
From expressions to automata .-. From automata to expressionst calcu- leting the inclex Not so fast
6.3 An infinite hierarchy 167
6.4 Generdised star height 170
7 A feld of automata 171
7.1 The Rabin Scott model 171
7.2 Two-way automaton 172
7.3 Moore and Mealy machines 174
8 A crop of properties 175
Solutions to the exercises 179
Notes \& references 214
II The power of algebra 217
1 Automata and rational sets 219
1.1 Automata over a monoid 219
1.2 Rational sets 220
The semiring $\mathfrak{F}(M)$ - Rational operations and sabsets Rational ex- pressions -- Image under morphism Intersection and inverse morphism
1.3 Behaviour of finite automata 225
1.4 Unambiguous rational sets 228
Definitions - The family LRat
2 Actions and recognisable sets 231
2.1 Actions on a set 232
Definition Matrix representation of actions - Subsets recognised by an action
2.2 Recognisable here, recognisable there 238
Consistency - Kleore's Theorenf - Automaton of an action
2.3 Elementary operations on recognisable subsets 243
Boolean operations - Inverse morphism -. Quotient - Morphisn and product
2.4 Minimisation 246
Action morphisms " Minimal action Syntactic songruence and monod
2.5 Algebra at work 251
Two examples -- Recounisable subsets ineluded in a product
3 Morphisms and coverings 255
3.1 Automata morphisms 255
Definitions and examples Conformal morphism-Lecal preperties
3.2 Quotients of mutomata 261
Out-surfective morphisms - Totally surgective morphisms - Moore's al- gorithm
3.3 Automata coverings 264
From local to global -- Produet of an antomaton with an action - The Goturce Transition Ienvma
3.4 The Schützenberger cowering 270
4 Universal automaton 273
4.1 Factorisations 275
2-factorisations - Sub-factorisations and factorisations-Morphisms and factorisations
4.2 Universal automata of a subset 279
Definitions and examples Propertics - Universal automaton relative to a generating set ...Universality of universal automata
4.3 Construction of the universal automaton 286
Expansion of a deterministic automaton Extraction of the universal ainomaton
4.4 Language approximations 291
5 The importance of being well ordered 293
5.1 Well quasi-orderings 293
5.2 Derivations 297
Preparations • Proof of Theorem 5.4
6 Rationals in the free group 301
6.1 Recognisable and rational in groups 301
Recognisable subsets - Rational subgroups Faton property
6.2 Description of the free group 305
Dyck congruence aud Dyck words - Shamir congruence and parenthetic words . Simplifications - Reduction associated with a simplification Unambiguous factorisation induced by a reduction
6.3 Rationals of the free group 314
Ratiouals of simplification monoids - Return to the free group
6.4 Büchi systems 319
7 Rationals in commntative monoids 323
7.1 The natural order on A^{\oplus} 323
The free commutative monoid - Dickson's Lemma
7.2 The lexicographic order on \mathbb{N}^{k} 326
Congruences of Pl^{k} - Lexicographic decomposition
7.3 Subtractive submonoids and affine sets 330
7.4 Semi-linear and semi-siraple sets 333
7.5 Rationals of \mathbb{N}^{k} 335
The Fredom Lemma ‥ Positive solutions of Diophantine linear systems

- Semi-simple subsets of \mathbb{R}^{k}. Proof of Theorems 7.3 and 7.4

7. 6 Rationals of commutative monoids 341
8 Star height of gromp languages 342
Solutions to the exercises 348
Notes \& references 372
III The pertinenge of enumeration 375
1 Formal power series on a graded monoid 379
1.1 Formal power series over M with coefficients in \mathbb{K} 379
Operations on $\mathbb{Z} 《 M\rangle$ - Support of a seriek - characteristic series - Hadamard product - Bcalar product
1.2 Graded monoids 383
1.3 Topology on $\mathbb{K}\langle\langle M\rangle\rangle$ 385
Distance Distance on $\mathbb{K}\langle\langle M\rangle$ Summable families Continuous mor- phisms
$2 \mathbb{K}$-automata and \mathbb{K}-rational power series 392
2.1 Star of a power series 393
Star in a topological semiring - Star of a proper series . Star of an arbitrary series
2.2 K-rational series 398
E-rational operations Rational E-expressions . Star of a matrix
2.3 Weighted automaton in a semiring 402
\mathbb{K}-automaton over $M-$ Behaviour of a \mathbb{K}-automaton … Notes -- Some other definitions and examples
2.4 The Fundamental Theorem of finite automata 409
Proper automata proper families of series Statement and proof - Notes and corollaries
$2.5 \quad \mathbb{K}$-coverings - \mathbb{K}-quotients 416
From coverings to K-coverings. Matrix description . . Co-K-covering Minimal K-quotient
$3 \quad \mathbb{K}$-recognisable series 424
3.1 K-representations 424
3.2 Products 426
Tensor product of R-representations - Hadamard product . Tensor product of series -- Shuffe product
3.3 The Kleene Schützenberger Theorem 433
4 Series on a free monoid 438
4.1 A characterisation of recognisable series 438
Quotients of series - Stable modules -- The Kleene-Schützenberger The- orem revisited
4.2 Derivation of rational \mathbb{K}-expressions 443
Polynomials of \mathbb{K}-expressions - K-derivatives of a \mathbb{K}-expression - De- rived terme The derived term automaton
4.3 Series on a field 451
Rank of a series - Reduced representation Linear recurreque ... Heffer tive computetions
4.4 Rational series and their supports 463
Rationatity of supports ... The Rational Skimming Theorem, I - Unde- cidable questions
5 Series on an arbitrary monoid 470
5.1 Complete semirings, continuous semirings 470
5.2 Star of a series 472
5.3 具-rational serics 474
6 Rational subsets in free products 476
6.1 Free product of monoids 476
6.2 Bipartite antomaton over a free produet 478
6.3 Bipartite deterministic automaton 482
6.4 Minimal deterministic bipartite antomaton 484
7 A non-commutative linear algebra primer 488
Solntions to the excreves 498

Rationality in relations

IV The richness of transducers 523
1 Rational relations: an introduction 525
1.1 Rational relations 525
Rational relations between free monoids \cdots Rational relations between arbitrary monoids
1.2 Realisation by automata 529
1.3 Realisation by morphisms 531
Realisation Evaluation Theorem - Composition Theorem - Star Lemma
1.4 Recognisable relations 539
1.5 Realisation by representation 540
Real-time transducers . From real-time transducors to representations
Theorem of evaluation and composition of representations
1.6 The Rabin-Scott model 545
2 嚴-relations 546
2.1 Definitions 548
The canonical isomorphism - \mathbb{K}-relations - - Support of relations - -char- acteristic relations - Continuity
2.2 Composition 553
2.3 Multiplicative \mathbb{K}-relations 555
3 Rational \mathbb{E}-relations 557
3.1 Reasonable semirings 558
Image of series under contimuous morphisms ... Image of seres under projections - \mathbb{K}-intersections
3.2 Realisation of rational \mathbb{K}-relations 561
Realisation by K-antomaton • Realisation by K-representation - Real- isation by morphisms
3.3 Evaluation and Composition Theorems 564Using recognition by morphisms - Using recognition by reprosentation
4 Equivalence of finite \mathbb{K}-transducers 568
4.1 Equivalence of \mathbb{B}-transducers, general case 569
4.2 Equivalence of \mathbb{E}-transducers, case of small alphabets 571
4.3 Equivalence of \mathbb{N}-transducers 574
5 Deterministic rational relations 577
5.1 Transducers with an endmarker 577
5.2 Deterministic transducers 578
Definition - Uniqueness of computations - Amost an action
5.3 Deterministic relations 584
Definitions - Coraplement - Ateration Lemma
5.4 Geography of Rat $A^{*} \times B^{*}$ I 588
5.5 Matrix representations 590
Representation of a deterministic transducer - Representation of a de- terministic relation
5.6 An example: the map equivalence of a morphism 592
6 Synchronisation of transducers 595
6.1 Rational relations of bounded length discrepancy 596
Definitions, notation and conventions - Characterisation of rational bld- relations . Translation into automata theoretic terms, and corollaries
6.2 Transducers of bounded lag 602
Lag in a computation or transducer - Resynchronisation algorithm for transducers ‥ Composition of letter-to-letter transducers
6.3 Synchronous relations 609
Another family of rational relations -- Determinisation and minimisation Geography of Rat $A^{*} \times B^{*} I I$
7 Malcev Neumann series 616
7.1 Order on the free group 617On ordered groups • Representation of the free group \cdots A detour viaordered rings \cdots Order on the free group
7.2 Series on an ordered group 622
The semiring $\mathbb{K}_{\text {wo }}\langle\langle G\rangle\rangle$ Ordered semigroups - The field $\mathrm{K}_{\mathrm{wo}}\langle\langle G\rangle\rangle=A$ last inclusion
Solutions to the exercises 627
Notes \& references 641
V The smplicity of functional Transducers 643
1 Functionary 645
1.1 Deciding functionality 645
An effective characterisation of functionality Equivalence of rational functions
1.2 Sequential functions 651
Some unconventional terminology Dual definitions - Composition
1.3 Pure sequential functions 658
1.4 Local functions 661
2 Uniformisation of rational relations 664
2.1 Proof of Theorem 2.1 (transtucer version) 666
2.2 Proof of Theorem 2.1 (representation version) 667
Represent of S-immersious of an antomaton-Semi-monomial matrices - Representation of S-uniformisations
2.3 Decomposition of rational fimetions 67.
The Weak Devomposition Theorem - The Btrong Decomposition The- orem
2.4 The Rationat Skimming Theorem II 677
3 Cross-section of rational functions 679
3.1 The rational cross-section property 680
The Rational Cross-Section Theorem The rational cross-section prop- erty for a monoid Return to simplification monoids
3.2 Choosing the uniformisation (or the cross-section) 685
Uniformisation of synchronous relations. Uniformisation of determin- istic relations Th. 3.3 back on the loom
4 Sequential functions 692
4.1 Two characterisations 692Translations of a function A functional characterisation \cdot A quasi-topological point of view
4.2 Deciding sequentiality 699
4.3 Minimisation 704Conjugation - Blockage of a sequential transducer Reduction - Effec-tive computation
4.4 The (Great) Sequentiality Theorem 711
Differential of a function - Proof of Theorem 4.5 iii) \Rightarrow i) - Proof of Theorem 4.5 ii) \Rightarrow iii) Return to the Sequentiality Theorem
4.5 Pure sequential functions and local functions 717
Solutions to the exercises 719
Notes \& references 737
BIBIIOGRAPHY 739
InDex 749

