Contents

Chapter I. Classical Mathematical Theory

I.1	Terminology	2
I.2	The Oldest Differential Equations	4 4
	Leibniz and the Bernoulli Brothers Variational Calculus Clairaut Exercises	6 7 9 10
I.3	Elementary Integration Methods First Order Equations Second Order Equations Exercises	12 12 13 14
I.4	Linear Differential Equations Equations with Constant Coefficients Variation of Constants Exercises	16 16 18 19
I.5	Equations with Weak Singularities Linear Equations Nonlinear Equations Exercises	20 20 23 24
I.6	Systems of Equations The Vibrating String and Propagation of Sound Fourier Lagrangian Mechanics Hamiltonian Mechanics Exercises	26 26 29 30 32 34
I.7	A General Existence Theorem Convergence of Euler's Method Existence Theorem of Peano Exercises	35 35 41 43
I.8	Existence Theory using Iteration Methods and Taylor Series Picard-Lindelöf Iteration	44 45 46 47 49

1.9	Existence Theory for Systems of Equations	51 52 53 55
I.10	Differential Inequalities Introduction The Fundamental Theorems Estimates Using One-Sided Lipschitz Conditions Exercises	56 56 57 60 62
I.11	Systems of Linear Differential Equations	64 65 66 66 67
I.12	Systems with Constant Coefficients. Linearization Diagonalization The Schur Decomposition Numerical Computations The Jordan Canonical Form Geometric Representation Exercises	69 69 70 72 73 77 78
I.13	Stability Introduction The Routh-Hurwitz Criterion Computational Considerations Liapunov Functions Stability of Nonlinear Systems Stability of Non-Autonomous Systems Exercises	80 80 81 85 86 87 88 88 89
I.14	Derivatives with Respect to Parameters and Initial Values The Derivative with Respect to a Parameter Derivatives with Respect to Initial Values The Nonlinear Variation-of-Constants Formula Flows and Volume-Preserving Flows Canonical Equations and Symplectic Mappings Exercises	92 93 95 96 97 100 104
I.15	Boundary Value and Eigenvalue Problems Boundary Value Problems Sturm-Liouville Eigenvalue Problems Exercises	105 105 107 110
1.16	Periodic Solutions, Limit Cycles, Strange Attractors Van der Pol's Equation Chemical Reactions Limit Cycles in Higher Dimensions, Hopf Bifurcation Strange Attractors The Ups and Downs of the Lorenz Model Feigenbaum Cascades Exercises	111 115 115 120 123 124 126

X Contents

Chapter II. Runge-Kutta and Extrapolation Methods

П.1	The First Runge-Kutta Methods . General Formulation of Runge-Kutta Methods . Discussion of Methods of Order 4	132 134 135 139 140 141
11.2	Order Conditions for Runge-Kutta Methods The Derivatives of the True Solution Conditions for Order 3 Trees and Elementary Differentials The Taylor Expansion of the True Solution Faà di Bruno's Formula The Derivatives of the Numerical Solution The Order Conditions Exercises	143 145 145 145 145 148 149 151 153 154
11.3	Error Estimation and Convergence for RK Methods Rigorous Error Bounds The Principal Error Term Estimation of the Global Error Exercises	156 156 158 159 163
II.4	Practical Error Estimation and Step Size Selection Richardson Extrapolation Embedded Runge-Kutta Formulas Automatic Step Size Control Starting Step Size Numerical Experiments Exercises	164 165 167 169 170 172
11.5	Explicit Runge-Kutta Methods of Higher Order. The Butcher Barriers 6-Stage, 5 th Order Processes Embedded Formulas of Order 5 Higher Order Processes Embedded Formulas of High Order An 8 th Order Embedded Method Exercises	173 173 175 176 179 180 181 185
11.6	Dense Output, Discontinuities, Derivatives	188 188 191 194 195 196 200 202
11.7	Implicit Runge-Kutta Methods Existence of a Numerical Solution The Methods of Kuntzmann and Butcher of Order 2s IRK Methods Based on Lobatto Quadrature	204 206 208 210

	Collocation Methods	211
	Exercises	214
II.8	Asymptotic Expansion of the Global Error	216
	The Global Error	216
	Variable h	218
	Negative h	219
	Properties of the Adjoint Method	220
	Symmetric Methods	221
	Exercises	223
II.9	Extrapolation Methods	224
	Definition of the Method	224
	The Aitken - Neville Algorithm	226
	The Gragg or GBS Method	228
	Asymptotic Expansion for Odd Indices	231
	Existence of Explicit RK Methods of Arbitrary Order	232
	Order and Step Size Control	233
	Dense Output for the GBS Method	237
	Control of the Interpolation Error	240
	Exercises	241
II.10	Numerical Comparisons	244
	Problems	244
	Performance of the Codes	249
	A "Stretched" Error Estimator for DOP853	254
	Effect of Step-Number Sequence in ODEX	256
II.11	Parallel Methods	257
	Parallel Runge-Kutta Methods	258
	Parallel Iterated Runge-Kutta Methods	259
	Extrapolation Methods	261
	Increasing Reliability	261
	Exercises	263
II.12	Composition of B-Series	264
	Composition of Runge-Kutta Methods	264
	B-Series	266
	Order Conditions for Runge-Kutta Methods	269
	Butcher's "Effective Order"	270
	Exercises	272
II.13	Higher Derivative Methods	274
	Collocation Methods	275
	Hermite-Obreschkoff Methods	277
	Fehlberg Methods	278
	General Theory of Order Conditions	280
	Exercises	281
II.14	Numerical Methods for Second Order Differential Equations	283
	Nyström Methods	284
	The Derivatives of the Exact Solution	286
	The Derivatives of the Numerical Solution	288
	The Order Conditions	290
	On the Construction of Nyström Methods	291
	An Extranolation Mathed for all f(m a)	294
	An Extrapolation Method for $y'' = f(x, y)$ Problems for Numerical Comparisons	296

	Performance of the Codes Exercises	298 300
II.15	P-Series for Partitioned Differential Equations Derivatives of the Exact Solution, P-Trees P-Series Order Conditions for Partitioned Runge-Kutta Methods Further Applications of P-Series Exercises	302 303 306 307 308 311
II.16	Symplectic Integration Methods	312 315 319 326 330 333 337
II.17	Delay Differential Equations. Existence Constant Step Size Methods for Constant Delay Variable Step Size Methods Stability An Example from Population Dynamics Infectious Disease Modelling An Example from Enzyme Kinetics A Mathematical Model in Immunology Integro-Differential Equations Exercises	339 339 341 342 343 345 345 347 248 349 351 352

Chapter III. Multistep Methods and General Linear Methods

III.1	Classical Linear Multistep Formulas Explicit Adams Methods	356 357
	Implicit Adams Methods	359
	Numerical Experiment	361
	Explicit Nyström Methods	362
	Milne-Simpson Methods	363
	Methods Based on Differentiation (BDF)	364
	Exercises	366
III.2	Local Error and Order Conditions	368
	Local Error of a Multistep Method	368
	Order of a Multistep Method	370
	Error Constant	372
	Irreducible Methods	374
	The Peano Kernel of a Multistep Method	375
	Exercises	377
Ш.З	Stability and the First Dahlquist Barrier	378
	Stability of the BDF-Formulas	380
	Highest Attainable Order of Stable Multistep Methods	383
	Exercises	387

III.4	Convergence of Multistep Methods	391
	Formulation as One-Step Method	393
	Proof of Convergence	395
	Exercises	396
111.5	Variable Step Size Multistep Methods	397
	Variable Step Size Adams Methods	397
	Recurrence Relations for $g_j(n)$, $\Phi_j(n)$ and $\Phi_j^*(n)$	399
	Variable Step Size BDF	400
	General Variable Step Size Methods and Their Orders	401
	Stability	402
	Convergence	407
	Exercises	409
TTT /		
III.6	Nordsieck Methods	410
	Equivalence with Multistep Methods	412
	Implicit Adams Methods	417
	BDF-Methods	419
	Exercises	420
Ш.7	Implementation and Numerical Comparisons	421
	Step Size and Order Selection	421
	Some Available Codes	423
	Numerical Comparisons	427
111.8	General Linear Methods	430
	A General Integration Procedure	431
	Stability and Order	436
	Convergence	438
	Order Conditions for General Linear Methods	441
	Construction of General Linear Methods	443
	Exercises	445
111 0		448
III.9	Asymptotic Expansion of the Global Error	448 448
	An Instructive Example Asymptotic Expansion for Strictly Stable Methods (8.4)	440
		450
	Weakly Stable Methods	454 457
	The Adjoint Method	
	Symmetric Methods	459
	Exercises	460
III.10	Multistep Methods for Second Order Differential Equations	461
	Explicit Störmer Methods	462
	Implicit Störmer Methods	464
	Numerical Example	465
	General Formulation	467
	Convergence	468
	Asymptotic Formula for the Global Error	471
	Rounding Errors	472
	Exercises	473
Appe	ndix. Fortran Codes	475
	Driver for the Code DOPRI5	475
	Subroutine DOPRI5	477
	Subroutine DOP853	481
	Subroutine ODEX	482

Subroutine ODEX2 Driver for the Code RETARD Subroutine RETARD	486
Bibliography	491
Symbol Index	521
Subject Index	523