PROPERTIES OF MATERIALS

Structure of Materials	
Electronic Structure of Selected Elements	,
Available Stable Isotopes of the Elements	4
The Periodic Table of the Elements	12
Atomic and Ionic Radii of the Elements	18
Bond Length Values Between Elements	2:
Carbon Bond Lengths	2
Carbon Bond Lengths in Polymers	2
Bond Angle Values Between Elements	25
Atomic Mass of Selected Elements	3
The Seven Crystal Systems	3:
The Fourteen Bravais Lattices	3
Crystal Structure of the Elements	3
Structure of Selected Ceramics	3
Atomic Mass of Selected Elements	4
Solid Density of Selected Elements	4
Density of Selected Tool Steels	4
Density of Selected Alloy Cast Irons	4
Density of Selected Ceramics	5
Density of Glasses	5
Specific Gravity of Polymers	6
Composition of Materials	
Composition Limits of Selected Tool Steels	7
Composition Limits of Selected Gray Cast Irons	7
Composition Limits of Selected Ductile Irons	7
Composition Ranges for Selected Malleable Irons	7
Composition Ranges for Selected Carbon Steels	7
Composition Ranges for Resulfurized Carbon Steels	7
Composition Ranges for Selected Alloy Steels	8
Composition Ranges for Selected Cast Aluminum Alloys	8
Composition Ranges for Selected Wrought Aluminum Alloys	8
Typical Composition of Selected Glass-Ceramics	8
Phase Diagram Sources	9
Phase Diagram Sources	9
Thermodynamic and Kinetic Data	9:
Bond Strengths in Diatomic Molecules	9
Bond Strengths of Polyatomic Molecules	10
Heat of Formation of Selected Inorganic Oxides	10
Phase Change Thermodynamic Properties for The Elements	12
Phase Change Thermodynamic Properties of Oxides	13

Melting Point of Selected Elements	144
Melting Points of Elements and Inorganic Compounds	146
Melting Points of Ceramics	156
Heat of Fusion for Elements and Inorganic Compounds	162
Heats of Sublimation (at 25°C) of Metals and Their Oxides	172
Thermodynamic Coefficients	173
Thermodynamic Coefficients for Selected Elements	175
Thermodynamic Coefficients for Selected Oxides	184
Entropy of the Elements	197
Vapor Pressure of the Elements at Very Low Pressures	199
Vapor Pressure of the Elements at Moderate Pressures	201
Vapor Pressure of the Elements at High Pressures	204
Vapor Pressure of Elements and Inorganic Compounds	207
Values of the Error Function	212
Diffusion in Metallic Systems	213
Diffusion of Metals into Metals	236
Diffusion in some Non-Metallic Systems	248
Diffusion in Semiconductors	249
Thermal Properties of Materials	259
Specific Heat of Selected Elements at 25 °C	260
Heat Capacity of Selected Ceramics	262
Specific Heat of Selected Polymers	264
Thermal Conductivity of Metals	269
Thermal Conductivity of Alloy Cast Irons	277
Thermal Conductivity of Ceramics	278
Thermal Conductivity of Glasses	289
Thermal Conductivity of Cryogenic Insulation and Supports	292
Thermal Conductivity of Special Concretes	294
Thermal Conductivity of Polymers	295
Thermal Expansion of Tool Steels	302
Thermal Expansion of Alloy Cast Irons	303
Thermal Expansion of Ceramics	304
Thermal Expansion of Glasses	322
Thermal Expansion of Polymers	332
Thermal Expansion Coefficients for Materials	
used in Integrated Circuits	340
Temper Designation System for Aluminum Alloys	342
Tool Steel Softening After 100 Hours	343
Thermoplastic Polyester Softening with Temperature	344
Mechanical Properties of Materials	345
Viscosity of Glasses	348
Internal Friction of SiO ₂ Glass	364
Surface Tension of Elements at Melting Point	365

	Surface Tension of Liquid Elements	372
	Tensile Strength of Tool Steels	387
	Tensile Strength of Gray Cast Irons	389
	Tensile Strength of Ductile Irons	390
	Tensile Strength of Malleable Iron Castings	391
	Tensile Strength of Selected Aluminum Casting Alloys	392
	Tensile Strength of Selected Wrought Aluminum Alloys	396
	Tensile Strength of Ceramics	405
	Tensile Strength of Glass	409
	Tensile Strength of Polymers	411
	Compressive Strength of Gray Cast Iron Bars	418
	Compressive Strength of Ceramics	419
	Yield Strength of Tool Steels	422
0	Yield Strength of Ductile Irons	424
	Yield Strength of Malleable Iron Castings	425
	Yield Strength of Cast Aluminum Alloys	426
	Yield Strength of Wrought Aluminum Alloys	429
	Yield Strength of Polymers	438
	Compressive Yield Strength of Polymers	441
	Flexural Strength of Polymers	444
	Shear Strength of Wrought Aluminum Alloys	451
	Torsion Shear Gray Cast Fe	458
	Hardness of Tool Steels	459
	Hardness of Gray Cast Irons	461
	Hardness of Ductile Irons	462
	Hardness of Malleable Iron Castings	463
	Hardness of Wrought Aluminum Alloys	464
	Hardness of Ceramics	470
	Microhardness of Glass	476
	Hardness of Polymers	478
	Coefficient of Static Friction for Polymers	486
	Abrasion Resistance of Polymers	488
	Fatigue Strength of Wrought Aluminum Alloys	490
	Reversed Bending Fatigue Limit of Gray Cast Iron Bars	495
	Impact Energy of Tool Steels	496
	Impact Strength of Polymers	498
	Tension Modulus of Treated Ductile Irons	506
	Tensile Modulus of Gray Cast Irons	506
	Young's Modulus of Ceramics	507
	Young's Modulus of Glass	513
	Modulus of Elasticity in Tension for Polymers	515
	Modulus of Elasticity in Compression for Polymers	519
	Compression Modulus of Treated Ductile Irons	519
	Bulk Modulus of Glass	520
	Modulus of Elasticity in Flexure of Polymers	521

Shear Modulus of Glass	529
Torsional Modulus of Gray Cast Irons	531
Torsion Modulus of Treated Ductile Irons	531
Modulus of Rupture for Ceramics	532
Poisson's Ratio for Ceramics	537
Poisson's Ratio of Glass	540
Torsion Poisson's Ratio of Treated Ductile Irons	542
Compression Poisson's Ratio of Treated Ductile Irons	542
Elongation of Tool Steels	543
Elongation of Ductile Irons	545
Elongation of Malleable Iron Castings	546
Total Elongation of Cast Aluminum Alloys	547
Total Elongation of Polymers	551
Elongation at Yield of Polymers	557
Area Reduction of Tool Steels	559
Electrical Properties of Materials	561
Electrical Resistivity of Alloy Cast Irons	562
Resistivity of Ceramics	563
Volume Resistivity of Glass	568
Volume Resistivity of Polymers	582
Critical Temperature of Superconductive Elements	591
Dissipation Factor for Polymers	592
Dielectric Strength of Polymers	600
Step Dielectric Strength of Polymers	608
Dielectric Constant of Polymers	610
Dielectric Breakdown of Polymers	618
Tangent Loss in Glass	619
Electrical Permittivity of Glass	625
Arc Resistance of Selected Polymers	631
Optical Properties of Materials	637
Transmission Range of Optical Materials	638
Transparency of Polymers	640
Refractive Index of Polymers	645
Dispersion of Optical Materials	649
Chemical Properties of Materials	657
Water Absorption of Polymers	658
Standard Electromotive Force Potentials	666
Galvanic Series of Metals	683
Galvanic Series of Metals in Sea Water	685
Corrosion Rate of Metals in Acidic Solutions	688
Corrosion Rate of Metals in Neutral and Alkaline Solutions	689
Corrosion Rate of Metals in Air	690

Corrosion Rates of 1020 Steel at 70°F	691
Corrosion Rates of Grey Cast Iron at 70°F	702
Corrosion Rates of Ni-Resist Cast Iron at 70°F	712
Corrosion Rates of 12% C Steel at 70°F	721
Corrosion Rates of 14% Si Iron at 70°F	732
Corrosion Rates of 17% Cr Steel at 70°F	743
Corrosion Rates of Stainless Steel 301 at 70°F	752
Corrosion Rates of Stainless Steel 316 at 70°F	763
Corrosion Rates of Aluminum at 70°F	774
Corrosion Rates of 70-30 Brass at 70°F	785
Corrosion Rates of Copper, Sn-Braze, Al-Braze at 70°F	796
Corrosion Rates of Hastelloy at 70°F	807
Corrosion Rates of Inconel at 70°F	817
Corrosion Rates of Lead at 70°F	827
Corrosion Rates of Monel at 70°F	837
Corrosion Rates of Nickel at 70°F	848
Corrosion Rates of Silicon Bronze at 70°F	859
Corrosion Rates of Titanium at 70°F	870
Flammability of Polymers	876
SELECTION OF MATERIALS	
Selection of Structural Properties	S-1
Selecting Atomic Radii of the Elements	S-2
Selecting Ionic Radii of the Elements	S-4
Selecting Bond Lengths Between Elements	S6
Selecting Bond Angles Between Elements	S-8
Selecting Density of the Elements	S-9
Selection of Thermodynamic Properties	S-13
Selecting Bond Strengths in Diatomic Molecules	S-14
Selecting Bond Strengths of Polyatomic Molecules	S-22
Selecting Heat of Formation of Inorganic Oxides	S-27
Selecting Specific Heat of the Elements at 25 °C	S-36
Selecting Melting Points of The Elements	S-38
Selecting Melting Points of Elements and Inorganic Compounds	S-40
Selecting Melting Points of Ceramics	S-54
Selecting Heat of Fusion For Elements and Inorganic Compounds	S-60
Selecting Entropy of the Elements	S-74
Selecting Diffusion Activation Energy in Metallic Systems	S-76

Selection of Thermal Properties	S-93
Selecting Specific Heat of Elements	S-94
Selecting Specific Heat of Polymers	S-96
Selecting Thermal Conductivity of Metals	S-100
Selecting Thermal Conductivity of Metals at Temperature	S-133
Selecting Thermal Conductivity of Alloy Cast Irons	S-168
Selecting Thermal Conductivity of Ceramics	S-169
Selecting Thermal Conductivity of Ceramics at Temperature	S-179
Selecting Thermal Conductivity of Polymers	S-189
Selecting Thermal Expansion of Tool Steels	S-194
Selecting Thermal Expansion of Tool Steels at Temperature	S-197
Selecting Thermal Expansion of Alloy Cast Irons	S-200
Selecting Thermal Expansion of Ceramics	S-201
Selecting Thermal Expansion of Glasses	S-216
Selecting Thermal Expansion of Polymers	S-226
Selecting Thermal Expansion Coefficients for	
Materials used in Integrated Circuits	S-231
Selecting Thermal Expansion Coefficients for	
Materials used in Integrated Circuits at Temperature	S-236
Selection of Mechanical Properties	S-241
Selecting Tensile Strength of Tool Steels	S-244
Selecting Tensile Strength of Gray Cast Irons	S-246
Selecting Tensile Strength of Ductile Irons	S-247
Selecting Tensile Strengths of Malleable Iron Castings	S-248
Selecting Tensile Strengths of Aluminum Casting Alloys	S-249
Selecting Tensile Strengths of Wrought Aluminum Alloys	S-252
Selecting Tensile Strengths of Ceramics	S-260
Selecting Tensile Strengths of Glass	S-264
Selecting Tensile Strengths of Polymers	S-266
Selecting Compressive Strengths of Gray Cast Iron Bars	S-271
Selecting Compresive Strengths of Ceramics	S-272
Selecting Compressive Strengths of Polymers	S-275
Selecting Yield Strengths of Tool Steels	S-278
Selecting Yield Strengths of Ductile Irons	S-280
Selecting Yield Strengths of Malleable Iron Castings	S-281
Selecting Yield Strengths of Cast Aluminum Alloys	S-282
Selecting Yield Strengths of Wrought Aluminum Alloys	S-285
Selecting Yield Strengths of Polymers	S-293
Selecting Compressive Yield Strengths of Polymers	S-295
Selecting Flexural Strengths of Polymers	S-297
Selecting Shear Strengths of Wrought Aluminum Alloys	S-302
Selecting Torsional Shear Strengths of Gray Cast Iron Bars	S-309
Selecting Hardness of Tool Steels	S-310
Selecting Hardness of Gray Cast Irons	S-312

Selecting Hardness of Ductile Irons	S-313
Selecting Hardness of Malleable Iron Castings	S-314
Selecting Hardness of Wrought Aluminum Alloys	S-315
Selecting Hardness of Ceramics	S-320
Selecting Microhardness of Glass	S-326
Selecting Hardness of Polymers	S-327
Selecting Coefficients of Static Friction for Polymers	S-333
Selecting Abrasion Resistance of Polymers	S-334
Selecting Fatigue Strengths of Wrought Aluminum Alloys	S-336
Selecting Reversed Bending Fatigue Limits of Gray Cast Iron Bars	S-340
Selecting Impact Energy of Tool Steels	S-341
Selecting Impact Strengths of Polymers	S-342
Selecting Tensile Moduli of Treated Ductile Irons	S-348
Selecting Tensile Moduli of Gray Cast Irons	S-348
Selecting Young's Moduli of Ceramics	S-349
Selecting Young's Moduli of Glass	S-354
Selecting Moduli of Elasticity in Tension for Polymers	S-356
Modulus of Elasticity in Compression for Polymers	S-359
Selecting Compression Moduli of Treated Ductile Irons	S-359
Selecting Bulk Moduli of Glass	S-360
Selecting Moduli of Elasticity in Flexure of Polymers	S-361
Selecting Shear Moduli of Glass	S-367
Selecting Torsional Moduli of Treated Ductile Irons	S-369
Selecting Torsional Moduli of Gray Cast Irons	S-369
Selecting Moduli of Rupture for Ceramics	S-370
Selecting Poisson's Ratios for Ceramics	S-374
Selecting Poisson's Ratios of Glass	S-376
Selecting Torsion Poisson's Ratios of Treated Ductile Irons	S-378
Selecting Compression Poisson's Ratios of Treated Ductile Irons	S-378
Selecting Elongation of Tool Steels	S-379
Selecting Elongation of Ductile Irons	S-381
Selecting Elongation of Malleable Iron Castings	S-382
Selecting Total Elongation of Cast Aluminum Alloys	S-383
Selecting Total Elongation of Polymers	S-386
Selecting Elongation at Yield of Polymers	S-391
Selecting Area Reduction of Tool Steels	S-392
Selection of Electrical Properties	S-395
Selecting Electrical Resistivity of Alloy Cast Irons	S-396
Selecting Resistivity of Ceramics	S-397
Selecting Volume Resistivity of Glass	S-402
Selecting Volume Resistivity of Polymers	S-415
Selecting Critical Temperature of Superconductive Elements	S-421
Selecting Dissipation Factor for Polymers @ 60 Hz	S-422
Selecting Dissipation Factor for Polymers @ 10 ⁶ Hz	S-427

Selecting Dielectric Strength of Polymers	S-432
Selecting Dielectric Constants of Polymers at 60 Hz	S-438
Selecting Dielectric Constants of Polymers at 10 ⁶ Hz	S-444
Selecting Tangent Loss in Glass	S-449
Selecting Tangent Loss in Glass by Temperature	S-454
Selecting Tangent Loss in Glass by Frequency	S-459
Selecting Electrical Permittivity of Glass	S-464
Selecting Electrical Permittivity of Glass by Frequency	S-470
Selecting Arc Resistance of Polymers	S-476
Selection of Optical Properties	S-481
Selecting Transmission Range of Optical Materials	S-482
Selecting Transparency of Polymers	S-484
Selecting Refractive Indices of Glasses	S-488
Selecting Refractive Indices of Polymers	S-494
Selection of Chemical Properties	S-497
Selecting Water Absorption of Polymers	S-498
Selecting Iron Alloys in 10% Corrosive Medium	S-504
Selecting Iron Alloys in 100% Corrosive Medium	S-519
Selecting Nonferrous Metals for use in a 10% Corrosive Medium	S-536
Selecting Nonferrous Metals for use in a 100% Corrosive Medium	S-551
Selecting Corrosion Rates of Metals	S-569
Selecting Corrosion Rates of Metals in Corrosive Environments	S-574
Selecting Flammability of Polymers	S-579
·	