Contents

Preface	ix
Chapter 1. The Fluid Continuum 1.1. Eulerian and Lagrangian Descriptions 1.2. The Material Derivative	1 1 6
Problem Set 1	10
 Chapter 2. Conservation of Mass and Momentum 2.1. Conservation of Mass 2.2. Conservation of Momentum in an Ideal Fluid 2.3. Steady Flow of a Fluid of Constant Density 	13 13 16 18
2.4. Intrinsic Coordinates in Steady Flow2.5. Potential Flows with Constant Density2.6. Boundary Conditions on an Ideal FluidProblem Set 2	20 21 22 24
 Chapter 3. Vorticity 3.1. Local Analysis of the Velocity Field 3.2. Circulation 3.3. Kelvin's Theorem for a Barotropic Fluid 3.4. The Vorticity Equation 3.5. Helmholtz' Laws 3.6. The Velocity Field Created by a Given Vorticity Field 3.7. Some Examples of Vortical Flows Problem Set 3 	27 27 29 30 30 32 33 35 41
 Chapter 4. Potential Flow 4.1. Harmonic Flows 4.2. Flows in Three Dimensions 4.3. Apparent Mass and the Dynamics of a Body in a Fluid 4.4. Deformable Bodies and Their Locomotion 4.5. Drift Problem Set 4 	45 45 51 57 62 65 70
 Chapter 5. Lift and Drag in Ideal Fluids 5.1. Lift in Two Dimensions and the Kutta-Joukowski Condition 5.2. Smoothing the Leading Edge: Joukowski Airfoils 5.3. Unsteady and Quasi-Steady Motion of an Airfoil 	73 74 77 79

5.4. Drag in Two-Dimensional Ideal Flow	81
5.5. The Three-Dimensional Wing: Prandtl's Lifting Line Theory	88
Problem Set 5	94
Chapter 6 Visconity and the Newier Stekes Eductions	07
6.1 The Newtonian Stress Tensor	97
6.2 Some Examples of Incompressible Viscous Flow	101
6.2. Dynamical Similarity	101
Droblem Sat 6	100
r toblem Set o	109
Chapter 7. Stokes Flow	111
7.1. Solutions of the Stokes Equations	113
7.2. Uniqueness of Stokes Flows	114
7.3. The Stokes Solution for Uniform Flow Past a Sphere	114
7.4. Two Dimensions: Stokes' Paradox	117
7.5. Time Reversibility in Stokes Flow	119
7.6. Stokesian Locomotion and the Scallop Theorem	121
Problem Set 7	121
Chapter 8 The Boundary Layer	123
8 1. The Limit of Large Re	123
8.2. Blasius Solution for a Semi-Infinite Flat Plate	125
8.3. Boundary Layer Analysis as a Matching Problem	132
8.4. Separation	133
8.5. Prandtl-Batchelor Theory	134
Problem Set 8	137
	120
Chapter 9. Energy	139
9.1. Mechanical Energy	139
9.2. Elements of Classical Inermodynamics	141
9.3. The Energy Equation	145
9.4. Some Basic Relations for the Nondissipative Case	145
9.5. Kelvin's Theorem in a Compressible Medium	140
Problem Set 9	149
Chapter 10. Sound	151
10.1. One-Dimensional Waves	151
10.2. The Fundamental Solution in Three Dimensions	152
10.3. Kirchhoff's Solution	153
10.4. Weakly Nonlinear Acoustics in One Dimension	155
Problem Set 10	158
Charte 11 Car D in	161
Lapter II. Gas Dynamics	101
11.1. INORHIDEAR WAVES IN One Dimension	167
11.2. Dynamics of a Polytropic Gas	162
11.5. Simple waves	105
11.4. Linearized Supersonic Flow	100

11.5. Alternative Formulation and Proof of the Drag Formula	171
11.6. Transonic Flow	173
Problem Set 11	174
Chapter 12. Shock Waves	175
12.1. Scalar Case	175
12.2. Quasi-linear Supersonic Flow	177
12.3. The Stationary Normal Shock Wave	178
12.4. Riemann's Problem: The Shock Tube	183
Problem Set 12	186
Supplementary Notes	189
Bibliography	195
Index	197

CONTENTS

vii