CONTENTS

List of figures vii
List of tables xi
Preface xiii
Acknowledgements xvii
Part 1
Physical states 1
1 Introduction 3
2 Gases 12
3 Liquids 29
4 Solids 51
Part 2
Force, pressure, energy and electricity 65
5 Force and pressure 67
6 Energy 83
7 Electricity 103
Part 3
Scientific transferable skills 117
8 Data analysis 119
9 Numerical calculations 148
10 Report writing 167
Appendix 1 Health questionnaire 191
Appendix 2 Example consent form 195
Appendix 3 Thermal equivalents of oxygen 197
Appendix 4 Scientific journals in exercise and sport 199
Appendix 5 Measurement concepts 201
Key terms 203
Index 210

FIGURES

3.1 The relationship between depth and pressure in a stationary liquid 32
3.2 The principle of a barometer 33
3.3 A hydrometer, an instrument used for measuring the specific gravity of a liquid 36
3.4 The relationship between pressure in a flowing liquid and the pressure gradient 37
3.5 Schematic showing the variables that affect the rate of flow of a liquid through a tube 38
3.6 The pH scale and related values 43
3.7 Blood speed and pressure in an obstructed artery 47
4.1 Increased internal energy of a solid through heating 53
4.2 The four types of crystal 57
4.3 The heat balance of the human body through heat gain and heat loss 58
5.1 Composing forces with the parallelogram technique 72
5.2 Force measurement in vertical and two horizontal planes with a force plate 73
5.3 A manometer 73
5.4 An isokinetic dynamometer 76
5.5 The torque-angle relationship during maximal voluntary isometric contractions of the knee extensor muscles 76
5.6 The torque-angular velocity relationship during maximal voluntary knee extension exercise 77
5.7 Typical force traces recorded for a running trial in vertical (a) and horizontal (b and c) directions with a force plate 78
5.8 An elastic collision between a ball and the ground 79
6.1 Adenosine triphosphate (ATP) which provides the human body with energy in a form that can be directly used 87
6.2 Work done in dragging a sledge between two points 90
6.3 Power maintained during a range of physical activities in comparison with other familiar power consumers 92
6.4 Storage of potential energy during the running action whilst the foot is in contact with the floor 95
6.5 A cycle ergometer used for measuring work done in exercise tests 97
6.6 A power curve over time recorded during cycle ergometry 100
6.7 Schematic of the relationship between energy, work, power and efficiency 101
7.1 A gold-leaf electroscope showing the effects of a positive potential 106
7.2 The triboelectric series 106
7.3 An electric current circuit 109
7.4 An electrocardiogram (ECG) trace showing the PQRST complex of electrical activity 113
8.1 Flow diagram of the process of scientific investigation 122
8.2 Histogram showing the frequency of observation of the range of heart rates 130
8.3 Graphical representation of standard deviation in relation to individual heart rate observations 134
8.4 Graphical representation of a standard normal curve 136
8.5 Scatter plot of years training against 100 m sprint time 138
8.6 Evaluation of statistical errors 141
8.7 Area of normal distributions defined as alpha (α) and beta (β) 142
9.1 A right-angled triangle 150
9.2 Resolving force components 152
9.3 Projectile motion of a ball 155
9.4 Straight line graph 156
9.5 Velocity-time graph 156
9.6 Curved graph with tangent 157
9.7 Constant velocity-time graph 158
9.8 Calculation of displacement: graphical integration 159
9.9 The trapezium rule 160
9.10 Velocity-time traces 161
10.1 Proportion of participants who consider either the swimming, cycling or running event the most important in an Olympic distance triathlon (an example of a pie chart) 181
10.2 Proportion of carbohydrate and fat sources during exercise prior to and following a training intervention (an example of a column chart) 182
10.3 Proportion of fat used during exercise after 2, 4, 6, 8 and 10 weeks of training (mean and standard deviation) (an example of a bar chart, or histogram) 182
10.4 Blood glucose concentration during 120 minutes of heavy exercise following ingestion of either 100 g of carbohydrate (10% solution) or placebo 1 hour prior to exercise (mean and standard deviation) (an example of a line graph) 182
10.5 Relationship between time to exhaustion and blood glucose concentration after 30 min of exercise (an example of a scatter plot) 183

TABLES

1.1 The seven base SI units 5
1.2 Units derived from the seven base SI units 7
1.3 Symbols for the non-SI units for time 7
1.4 Unit multiples 8
6.1 Typical amount of energy stored within a 70 kg human body ($\sim 15 \%$ body fat) in different forms 87
6.2 Amount of various foods that provide 1000 kJ 88
8.1 Experimental designs used in the study of exercise and sport 126
8.2 Characteristics of the different types of data 128
8.3 Calculation of descriptive statistics based upon resting heart rate (HR, beats $\cdot \mathrm{min}^{-1}$) from 30 female participants 129
8.4 Calculation of variance, standard deviation and mean absolute deviation based upon resting heart rate ($H R$, beats $\cdot \mathrm{min}^{-1}$) from 30 female participants 133
8.5 Calculation of derived values based upon training duration (years) and performance times (seconds) of male 100 m sprinters 139
10.1 Individual and group training, anthropometric and physiological characteristics for eight well-trained runners (an example of a table) 181
10.2 A summary of the content of each section of a scientific report 188

