Inhalt

		ngen
I	Poly	nere Werkstoffe
	1 Ein	leitung
	1.1	Die Bedeutung polymerer Werkstoffe
	1.2	Polymerforschung als Werkstoffwissenschaft
	1.3	Modifizierungsmöglichkeiten von Polymeren
	2 Übe	erblick über das mechanische Verhalten von Polymeren
	2.1	Grundtypen des mechanischen Verhaltens
	2.2	Abhängigkeiten von grundlegenden Materialkenngrößen
		Charakterisierung des mechanischen Verhaltens
II	Über	blick über die Morphologie und die mikromechanischen Prozesse 1
	3 Me	thoden zur Untersuchung von Morphologie und mikromechanischen Prozessen . 1
	3.1	Methoden zur Untersuchung der Morphologie
		3.1.1 Lichtmikroskopische Methoden
		3.1.2 Elektronenmikroskopische Methoden
		3.1.3 Weitere Methoden
	3.2	Erfassung von mikromechanischen Prozessen
		3.2.1 Elektronenmikroskopische Methoden
		3.2.2 Weitere Methoden
	3.3	Elektronenmikroskopische Techniken
	2.0	3.3.1 Durchstrahlungs-Elektronenmikroskopie
		3.3.2 Oberflächen-Direktabbildungsverfahren
	4 Mo	lekulare und übermolekulare Strukturen
		Strukturelle Grundformen der Makromoleküle
		4.1.1 Struktur der Makromoleküle (Konstitution und Konfiguration) 5
		4.1.2 Gestalt der Makromoleküle (Konformation)
		4.1.3 Zusammenlagerungen und Wechselwirkungen der Makromoleküle 6
	4.2	Übermolekulare Strukturen
		4.2.1 Amorphe Strukturen
		4.2.2 Teilkristalline Polymere
		4.2.3 Polymerkompositionen
	5 Mil	cromechanische Prozesse von Deformation und Bruch
		Grundtypen der Deformation
	5.2	Zähigkeitssteigernde Mechanismen
		Bruchprozesse
	5.5	5.3.1 Mikrorißbildung
		5.3.2 Rißausbreitung
		5.3.3 Rruphstrukturen 8

6 All	gemein	e Charakterisierung von Crazes und crazeartigen Deformationszonen .		88
6.1	Das I	Phänomen "Craze"		88
		male der Crazes		90
	6.2.1	Grundtyp der Crazes		90
	6.2.2	Variationen der Crazestruktur		
		Zur Terminologie der Crazes		
		Verbindung zum Bruchverhalten der Kunststoffe und die zwei	•	70
	0.2	Aspekte der Crazes		99
63	Finfly	ußfaktoren für Crazebildung und Crazewachstum		
0.5	631	Crazeeinleitung und Crazewachstum	•	103
	632	Äußere Einflußfaktoren	•	103
		Innere Einflußfaktoren		
61		rien und Theorien von Crazeeinleitung und Crazewachstum		
0.4				
		Kriterien zur Crazeeinleitung		
		Hypothesen und Theorien der Crazeeinleitung		
		Hypothesen und Theorien des Crazewachstums		
		Beziehungen zum molekularen Größenniveau		
6.5	Mech	anismen der Crazebildung	•	120
	6.5.1	Crazeeinleitung		
		a) Bildung der Vorcrazes	•	120
		b) Umwandlung in den entwickelten, fibrillierten Craze		
		c) Polymerspezifische Unterschiede		126
		d) Einfluß einer Temperung unterhalb T _g		126
	6.5.2	Längenwachstum (Crazespitzenfortschreiten)		129
	6.5.3	Dickenwachstum		130
	6.5.4	Strukturell initiierte Crazes		132
III Besc	hreibu	ng einzelner Polymere		140
7 Am	orphe l	Polymere		140
7.1	Zur ü	ibermolekularen Struktur der amorphen Polymere		141
	7.1.1	Amorphe, einphasige Kunststoffe		141
	7.1.2	Amorphe, mehrphasige Kunststoffe		142
7.2	Polyst	tyrol (PS)		142
	7.2.1	Quantitative Darstellung der Crazestruktur		142
		a) Crazeprofil		142
		b) Crazespitzen		
		c) Innenstruktur der Crazes		144
		d) Dehnung in den Crazes		148
	722	Wachstum und Reißen der Crazes		150
	723	Beeinflussungen der Crazebildung		152
	9 - 44 3	a) Einfluß einer Probenorientierung		
		b) Einfluß einer Probentemperung		154
		c) Einfluß energiereicher Bestrahlung		155
		d) Einfluß der Umgebung		156
		e) Weitere Beeinflussungen		157
7 2	Dolar	nethylmethacrylat (PMMA)		
		l-Acrylnitril-Copolymer (SAN)		161
7.4		Grundeffekte		

7.40 D ' A	
7.4.2 Beeinflussungen der Crazebildung	
a) Einfluß einer Temperung	164
b) Einfluß energiereicher Bestrahlung	166
7.4.3 Analogien zu SAN	166
7.5 Polyvinylchlorid (PVC)	167
7.6 Polycarbonat (PC)	170
7.7 Weitere amorphe Polymere	174
7.8 Vergleich der Crazes in verschiedenen amorphen Kunststoffen	175
7.8.1 Struktur der Crazes	175
7.8.2 Zum Phänomen der Innencrazes	177
7.8.3 Beziehungen zur Zähigkeit	178
8 Teilkristalline Polymere	185
8.1 Überblick über die Morphologie	185
0.1 1 Ctentletomicalfult	185
8.1.1 Strukturvielfalt	
8.1.2 Gestalt und Struktur der Lamellen	188
8.1.3 Beeinflussungen der Morphologie	192
8.2 Überblick über das Deformationsverhalten	192
8.2.1 Sprödartige Versagensmechanismen	193
8.2.2 Duktiles Versagen	196
8.3 Crazes in teilkristallinen Polymeren	204
8.3.1 Crazing bei tiefen Temperaturen	204
8.3.2 Umgebungs-Crazing	205
	209
8.3.4 Crazing beim plastischen Bruch	
8.4 Deformationsprozesse in verschiedenen teilkristallinen Polymeren	
8.4.1 Polyethylene	
a) Einfluß des Molekulargewichtes	
b) Einfluß des Verzweigungsgrades	
8.4.2 Polypropylen	
8.4.3 Weitere teilkristalline Polymere	
8.5 Hochfeste Materialien	
8.5.1 Grenzen einer Eigenverstärkung	
8.5.2 Orientierung von schmelzekristallisiertem Material	
8.5.3 Orientierte Fäden durch Lösungs- oder Gelspinnen	229
9 Polymerkombinationen	236
9.1 Überblick über die Morphologie von Polymerkombinationen	236
9.1.1 Kautschukmodifizierte Thermoplaste	236
9.1.2 Polymerblends	239
9.2 Kautschukmodifizierte, schlagzähe Polymersysteme	241
9.2.1 Klassische, schlagzähe Polymere (PS-sz, ABS)	242
a) Herstellung	
b) Grundeffekte	242
() A C C C C C C C C C C C C C C C C C C	251
d) Kautschukvolumenanteil	252
e) Kautschukteilchenmodul	257
f) Pfropfgradeinfluß	261
g) Teilchengrößeneinfluß	262
h) Gestalt und Innenstruktur der Kautschukteilchen	266
i) Belastungsbedingungen	268

		j) Weitere Systeme und spezielle Effekte			269
		k) Alternative Zähigkeitsmodelle			270
	9.2.2	Weitere kautschukmodifizierte Disperssysteme			271
		a) Kautschukmodifizierte, amorphe Thermoplaste			271
		b) Kautschukmodifiziertes PP			272
		c) Kautschukmodifiziertes PA			272
		d) Kautschukmodifizierte Epoxidharze			276
	9.2.3		•	•	2.0
		(,,Wabensysteme")			277
		a) Energieabsorptionsmechanismus	•	•	277
		b) Verarbeitungseinfluß	•	•	281
		c) Alterungsverhalten	•	•	201
		d) Verschiedene weitere Wabensysteme	•	•	204
	024	Allgemeingültige Prinzipien einer Schlagzähigkeitserhöhung			
0					
9		noplast/Thermoplast-Kombinationen			
		Einfluß der Verträglichkeit			
		Mischungen aus amorphen Polymeren			
		Mischungen aus amorphen und teilkristallinen Polymeren			
_		Mischungen teilkristalliner Polymere miteinander			
9		retische Analysen zum Einfluß der Morphologie auf die Zähigkeit	•	٠	298
	9.4.1				
		und in Einzelteilchen			
		Überlagerung der Spannungsfelder benachbarter Teilchen			
		Energetische Effekte			
	9.4.4	Konsequenzen aus den theoretischen Befunden			
		a) Rolle der Teilchengröße			307
		b) Rolle des Teilchenabstandes			309
10	Toilekane	gefüllte Polymere			320
10	101 M	orphologie gefüllter Thermoplaste	•	•	320
	10.1 IVIO	kromechanische Grundeffekte	•	•	323
	10.2 IVIII	Kromechanische Grundenekte	٠	٠	323
	10	2.1 Elastizitätstheoretische Ergebnisse	•	٠	323
	10	2.2 Deformationseffekte bei weitgehend fehlender			224
		Grenzflächenhaftung	٠	•	220
	10.	2.3 Verhalten von Systemen mit starker Phasenhaftung	٠	•	329
	10.	2.4 Ternäre Polymere	•	٠	331
	10.3 Zäl	higkeitseffekte	•	•	332
	10.	3.1 Vergleich mit kautschukmodifizierten Kunststoffen	٠	٠	332
	10.	3.2 Crazeartige Deformationen			333
		a) Struktur der crazeartigen Zonen		٠	333
		b) Einfluß des Teilchenabstandes	•	٠	335
		c) Einfluß der Matrixduktilität			340
	10.4 Pol	lymerspezifische Effekte	٠		341
14	Face	igt=drte Delrimone			345
11	raserver	stärkte Polymere		٠	245
		perblick über die Stoffklasse			
		ikromechanische Grundeffekte			
		2.1 Strukturelle Besonderheiten			
	11.	2.2 Festigkeit und Bruchverhalten		٠	348
	11.3 M	öglichkeiten zur Steigerung der Zähigkeit			352

	11.3.1 Energiedissipative Mechanismen 11.3.2 Experimentelle Ergebnisse								354
11.4	Weitere (materialabhängige) Besonderheiten		٠						358
12 Weit	ere Polymere								363
	Duroplaste								
	12.1.1 Harzmaterial								
	12.1.2 Kautschukmodifizierte Epoxidharze								
12.2	Polymere und Umweltaspekte								
	12.2.1 Polymere aus dem Recycling								
	12.2.2 Biologisch abbaubare Kunststoffe .								
12.3	Verschiedenes								
	12.3.1 Mikroporöse Materialien								
	12.3.2 Kombinationen mit anorganischen W								
Sachregister		٠			٠.				378