		Seite
R. Schraft	Auf dem Weg zum intelligenten Roboter	1
Ultraschall-Positic	onssensoren	
J. Löschberger und V. Magori	Luft-Ultraschall-Sensoren mit lateraler Auflösung für Robotik-Anwendungen	21
U. Opera	Präzisionsabstandsmessung mit Ultraschall	27
R. Föhr, K. Schneider und W. Ameling	Ein 3-D-Positionssensor auf Ultraschallbasis	31
P. Hauptmann	Anwendung von Ultraschallsensoren für die Prozeßmeßtechnik fluider Systeme	35
A. Hauck	Ultraschalltomographie zur berührungslosen Strömungsmessung	41
Zuverlässigkeit vo	on Sensorsystemen	
W. Christmann	Sicherheitsaspekte bei Sensorsystemen	49
Test und Abgleich	en von Sensoren	
W. Richter, KH. Haase und M. Horn	Abgleichstrategie für Low-Cost-Sensoren	53
E. Badenius, G. Kowalski und A. Petersen	Comparison of different methods for tolerance Compensation of miniature sensors	57
G. Berge und H. Paul	Langzeitstabilität von Sensoren und Aufnehmern mit metallischen Folien- und Dünnfilm-DMS	65
Chr. Rohrbach	Möglichkeiten und Grenzen der Miniaturisierung von Meßaufnehmern	73
Kraft- und Drucks	ensoren	
R. Schörner	Semicustom-Design für frequenzanalogen Drucksensor	93
B. Graeger, H. Schäfer und R. Kobs	Selbstkompensierte SI-Drucksensoren mit Dünnschichtdehnungsmeßstreifen	99

		Seite
H. Fischer, J. Müller, S. Weißenrieder und Th. Kettner	Hochtemperaturfester Druckaufnehmer mit Titanoxinitrid-Dehnungsmeßstreifen	105
R. A. Buser und N. F. de Rooij	Monolithisches Kraftsensorfeld	115
C. Schucht	Kapazitive Druckmeßzelle mit elektrostatischer Auslenkungskompensation	119
Dynamometrisch	e Spezialsensoren	
A. Kegler	Kapazitive Oberflächensensoren mit Feldfokussierung	127
T. Zwicker	Frequenzanaloge Dehnungsmessung mittels kommerzieller OFW-Resonatoren	133
J. Neumeister und E. Lüder	Ein Sensor mit OFW – Filtern für den Druck und die Masse von Gasen	139
K. W. Dobler	Neuer Drucksensor für hohe dynamische Drücke	145
B. Puers, W. Sansen, L. Reynaert und W. Snoeys	Neue Druck- und Beschleunigungsaufnehmer in Silicium aufgrund des Piezofunktions-Prinzips in Transistoren	149
J. Seekircher und B. Hoffmann	Polyvinylidenfluorid (PVDF) für taktile Sensoren?	155
Sensoren für die f	Robotik	
G. Kegel	Vergleichende Untersuchungen an Sensoren zur Messung der Greifparameter in Greiferwerkzeugen für Industrieroboter	163
T. Kallfaß, E. Lüder, W. Otterbach und A. Weippert	Ein matrixadressierter optischer Sensor zur Erkennung von Schattenbildern und Konturen	171
B. Maihöfer und P. Dullenkopf	Ein neuartiger Fluoreszenz-Sensor zur optoelektronischen Positionsmessung	175
B. Weißhaupt	Position, Identifikation und Kommunikation – Sensorik für die flexible Automatisierung	179
HW. Spaude und R. Class	Funkensensoren für die Abtastung von Werkstückkonturen	183

		Seite
H. Walcher	Der Einfluß intelligenter Winkel- und Wegsensoren auf die Steuerung von Be- und Verarbeitungsmaschinen	189
R. Striek	Sensorik in mikrocomputer-gesteuerten Haushaltsgeräten	195
R. Kist	Streckenneutrale und buskompatible faseroptische Sensoren	205
Faseroptische Sen	soren	
G. Martens, J. Kordts und G. Weidinger	Referenzverfahren zum streckenneutralen Betrieb faseroptischer Sensoren	221
W. Konz	Entwicklung einer integriert-optischen Braggzelle für die Signalverarbeitung von faseroptischen Sensoren	227
N. Fürstenau	Fiber Optic Double-Polarization Interferometers for Remote Digital Displacement and Force Sensing	231
K. Spindler, G. Lorenz, A. Erhard und E. Hahne	Faseroptischer Sensor zur lokalen Gasgehaltsmessung in Zweiphasenströmungen	237
Postersitzung		
J. Frank	Einfluß der Dicke und des Dehnungsgradienten auf das Kriechen von dünnen Biegebalken	243
W.J. Becker und W. Braasch	Elektromechanischer Oszillator zur Dichtemessung	249
R.S. Jachowicz und S. Lada	Thick-Film Anemometric Sensor for Gas Flow-Meter	255
R. Beck und M. Jurca	UV-Plasma-Sensor zur Überwachung von Laserschweißungen	259
B. Christmann, J. Schulze und J. Weber	Wirbelstromsensoren zur Erfassung von Abständen und Materialfehlern bei extrem ungünstigen Meßbedingungen in Anlagen	263
H. Ziegler	Der ILTIS-Bus: Ein quasidigitaler Sensorbus hoher Störfestigkeit	267
M. Lustenberger	Neues Eiswarnsystem	271
J. Wolf	Ultraschalltomographie zur Untersuchung von Zweiphasen-Strömungen	277

		Seite
F. Dalitz und H. Köhn	UNISENS – ein universelles, digitales Sensorsystem im Feld	283
K. Hartmann und B. Bundschuh	A Multi Channel Sensor-Concept for 3-D-Contour Detection and the Influence of the Optical Subsystem	289
K. Pásztor, G. Végh, P. Skirka und V. Timár-Horváth	Measurement by Isfets Using a Gold Stabilyzing (Micro-Reference Electrode) on the Chip	295
J. Franz	Aufbau, Funktionsweise und technische Realisierung eines piezoelektrischen Siliziumsensors für akustische Größen	299
W. Germer	Langzeitstabilität und Medienresistenz von "Low-Cost"-Drucksensoren	303
R. Prinz, R. Charvat und HO. Höffler	Dehnungssensor mit extrem hoher Auflösung für die Fertigungsautomatisierung	309
G. Ehrler	Technologische Innovationen bei Halbleiterdrucksensoren	313
Th. Rienmüller und H. Weißmantel	Taktiler Konturensensor für den Einsatz in Robotergreifern	317
H. Paul	Temperaturgangfehler bei Dünnfilm-DMS-Sensoren und Möglichkeiten für den gezielten Abgleich	321
R. Lambrich, R. Herrmann und D. Funken	Kapazitiver Taudetektor für die industrielle Feuchtemessung	329
G. Hellwig, N. Normann und G. Uhl	Entwicklung eines Sensors zur On-line-Überwachung der Alterung von Motorenölen und des Dispergierzustandes von Füllstoff-Polymersystemen	335
KH. Härdtl, A. Müller und U. Schönauer	Resistive Dickschicht-Sauerstoffsensoren	339
W. Borst	Analoge Meßwertübertragungssysteme mit integrierter digitaler Kommunikation	345
H. Reichl	Aufbau und Verbindungstechnik für Sensoren	351
W. Göpel	Entwicklungstrends bei chemischen und biochemischen Sensoren	365

		Seite
Chemische Sensor	ren	
M. Klein	Drift und Ansprechverhalten: Zeiteffekte bei ionensensitiven Feldeffekttransistoren	381
P. Berg, T. Näbauer und I. Ruge	Biosensoren und Feldeffekttransistorbasis	387
W. Mokwa	Der Nachweis von Hydriden mit SnO _x -Dünnfilmen unterschiedlicher Schichtdicke	391
K. D. Schierbaum, HD. Wiemhöfer, S. Vaihinger, R. Kowalski und W. Göpel	Vergleichende Studien an Einkristall-, Dünnschicht- und Dickschicht-SnO ₂ -Gassensoren	395
A. Felske	Schwerpunkte laser-meßtechnischer Anwendungen in der Automobilforschung	401
H. Wolf, R. Grisar, U. Klocke, W.J. Riedel, R. Wißler, K. Gregorius und H. Schömer	Diodenlaserspektrometer zur Echtzeit-Bestimmung des NH3-Schlupfes bei Denox-Katalysatoren	411
M. Tacke und R. Grisar	Quantitative Analysen durch Spektroskopie mit IR-Laserdioden	417
J.P. van der Linden, W.Ch. Heerens, J.J. Heerens und J.A. de Vries	Design Aspects of a Multiterminal Cylindrical Tube Sensor for Capacitive Content Monitoring	423
W. Schelter, G. Mages, H. Dahm, F. L. Dickert und S. Schreiner	Optochemischer Gassensor für polare Lösungsmittel	431
N. Normann und G. Uhl	Mikrocomputer-gesteuerte Signalauswertung für dielektrische Sensoren unter der Verwendung von ASICs	435
J. Riegel und KH. Härdil	Ein PTC-Pellistor-System zur Erkennung brennbarer Gase	441
K. Schindler, HD. Wiemhöfer, W. Göpel und D. Schmeißer	Charakterisierung reiner und platinbedeckter Oberflächen des stabilisierten Zirkondioxids in Sauerstoffsensoren	445

		Seite
Temperatur-Messu	ung	
V. Tank, H. Dietl, G. Hensgen und B. Sarnes	Bestimmung von Empfindlichkeit, Nachweisvermögen und Zeitkonstante(n) von Infrarotdetektoren für die berührungslose Temperaturmessung	453
P. Baumann, U. Birkholz und K. Meyer	Untersuchung funkenerosiv hergestellter Mikrothermo- elemente als Infrarotstrahlungssensoren auf Bi ₂ Te ₃ -Basis	459
V. Tank	Berührungslose Temperaturmessung mit selbsttätiger Berücksichtigung des Emissionsgrades	463
Intelligente Sensor	ren	
J. Otto	Ein neues radiometrisches Verfahren zur Massenstrommessung	471
H. Braun und M. Füg	Die Steigungskorrelation – ein neues Verfahren zur berührungslosen Strömungsmessung beim pneumatischen Transport	475
A. Sutter	Mehrkomponenten Gasanalyse mit nichtselektiven Sensoren für die Prozeßtechnik	481
H. Janocha und M. Foth	In-Process-Sensor für Werkstückwelligkeit beim Außenrundschleifen	485
R. Haberland und KH. Seidel	Kapazitives Sensorsystem nach dem Impulsladeverfahren	489
D. Barschdorff und M. Jeude	Schnelle Sensorsignalverarbeitung und Robotersteuerung am Beispiel der Farberkennung	495
Statements zur Po	diumsdiskussion Schnittstellen	
G. Färber	Schnittstellen in Sensorsystemen	503
T. Pfeifer	Schnittstellenproblematik bei Sensorsystemen in Produktionsanlagen	513
H. Schumny	Digitale Schnittstellen: Aspekte der Eichfähigkeit	519
A. Schwaier	Digitale Schnittstelle der Automatisierungstechnik zur Übertragung von Sensordaten zu und von Geräten der Leitebene industrieller Prozesse	525
K. Stamm	Sensoren im Umfeld modularer Kfz-Elektronik	533
	Autorenverzeichnis	543