Summary of contents

	Fundamentals	1
PART 1	Equilibrium	17
1	The properties of gases	19
	Mathematical background 1: Differentiation and integration	42
2	The First Law	44
	Mathematical background 2: Multivariate calculus	91
3	The Second Law	94
4	Physical transformations of pure substances	135
5	Simple mixtures	156
6	Chemical equilibrium	209
PART 2	Structure	247
7	Quantum theory: introduction and principles	249
	Mathematical background 3: Complex numbers	286
8	Quantum theory: techniques and applications	288
	Mathematical background 4: Differential equations	322
9	Atomic structure and spectra	324
	Mathematical background 5: Vectors	368
10	Molecular structure	371
	Mathematical background 6: Matrices	414
11	Molecular symmetry	417
12	Molecular spectroscopy 1: rotational and vibrational spectra	445
13	Molecular spectroscopy 2: electronic transitions	489
14	Molecular spectroscopy 3: magnetic resonance	520
15	Statistical thermodynamics 1: the concepts	564
16	Statistical thermodynamics 2: applications	592
17	Molecular interactions	622
18	Materials 1: macromolecules and self-assembly	659
19	Materials 2: solids	695
	Mathematical background 7: Fourier series and Fourier transforms	740
PART 3	Change	743
20	Molecules in motion	745
21	The rates of chemical reactions	782
22	Reaction dynamics	831
23	Catalysis	876
Resource so	ction	900
Answers to 4	evercises and problems	948
Index		959

xxiv **CONTENTS**

Discussion questions	130
Exercises	131
Problems	132

4	Phys	ical transformations of pure substances	135
	Phas	e diagrams	135
	4.1	The stabilities of phases	135
	4.2	Phase boundaries	137
	4.3	Three representative phase diagrams	140
	14.1	Impact on technology: Supercritical fluids	142
	Ther	nodynamic aspects of phase transitions	143
	4.4	The dependence of stability on the conditions	143
	4.5	The location of phase boundaries	146
	4.6	The Ehrenfest classification of phase transitions	149
	Checl	klist of key equations	152
	Discu	ssion questions	152
	Exerc	ises	153
	Proble	ems	154
5	Simp	ole mixtures	156
	The t	hormodynamic description of mixtures	156
	E 4	Desting malar quantities	150
	5.1	The thormodynamics of mixing	157
	5.3	The chemical potentials of liquids	164
	The		407
	The h		10/
	0.4 5.5	Liquid mixtures	167
	0.0 IE 4	Congative properties	169
	13.1	biochemistry	175
	Phas	e diagrams of binary systems	176
	5.6	Vapour pressure diagrams	176
	5.7	Temperature-composition diagrams	179
	5.8	Liquid-liquid phase diagrams	181
	5.9	Liquid-solid phase diagrams	185
	15.2	Impact on materials science: Liquid crystals	188
	Activ	ities	190
	5.10	The solvent activity	190
	5.11	The solute activity	191
	5.12	The activities of regular solutions	194
	5.13	The activities of ions in solution	195
	Chec	klist of key equations	198
	Furth	er Information 5.1: The Debye–Hückel theory of ionic	
	Diago		199
	Exoro	SSION QUESTIONS	200
	Proble	nees	201
		0113	204

6	Che	mical equilibrium	209
	Spor	taneous chemical reactions	209
	6.1	The Gibbs energy minimum	210
	I6.1	Impact on biochemistry: Energy conversion	
		in biological cells	211
	6.2	The description of equilibrium	213
	The r	esponse of equilibria to the conditions	221
	6.3	How equilibria respond to changes of pressure	221
	6.4	The response of equilibria to changes	
		of temperature	223
	16.2	Impact on technology: Supramolecular	
		chemistry	226
	Equi	ibrium electrochemistry	227
	6.5	Half-reactions and electrodes	228
	6.6	Varieties of cells	229
	6.7	The cell potential	230
	6.8	Standard electrode potentials	233
	6.9	Applications of standard potentials	235
	16.3	Impact on technology: Species-selective	
		electrodes	239
	Chec	klist of key equations	240
	Discu	ission questions	241
	Exerc	vises	241
	Probl	ems	243

PART 2 Structure

247

249 7 Quantum theory: introduction and principles 249 The origins of quantum mechanics 7.1 250 **Energy** quantization 255 7.2 Wave-particle duality 259 17.1 Impact on biology: Electron microscopy 260 The dynamics of microscopic systems 260 7.3 The Schrödinger equation 262 7.4 The Born interpretation of the wavefunction 266 **Quantum mechanical principles** 266 7.5 The information in a wavefunction 7.6 276 The uncertainty principle 279 7.7 The postulates of quantum mechanics 280 Checklist of key equations 280 Further information 7.1: Classical mechanics 283 **Discussion questions** 283 Exercises 284 Problems

CON	TENTS	XXV

	Math	ematical background 3: Complex numbers	286
	MB3.	1 Definitions	286
	MB3.	2 Polar representation	286
	MB3.	3 Operations	287
8	Quar	ntum theory: techniques and applications	288
_	Trans	slational motion	288
	8.1	A particle in a box	289
	8.2	Motion in two and more dimensions	293
	18.1	Impact on nanoscience: Quantum dots	295
	8.3	Tunnelling	29 7
	18.2	Impact on nanoscience: Scanning probe	299
	Vibro	tional motion	200
			301
	0.4 8 5	The wavefunctions	302
	0.0		502
	Rotat	tional motion	306
	8.6	Rotation in two dimensions: a particle on a ring	306
	8.7	Rotation in three dimensions: the particle on	210
		a sphere	215
	0.0	spin	515
	Check	klist of key equations	317
	Discu	ssion questions	317
	Exerc	ISES	317
	FIODIE	305	219
	Math	ematical background 4: Differential equations	322
	MB4.	1 The structure of differential equations	322
	MB4.	2 The solution of ordinary differential equations	322
	MB4.	3 The solution of partial differential equations	323
9	Aton	nic structure and spectra	324
	The s	structure and spectra of hydrogenic atoms	324
	9.1	The structure of hydrogenic atoms	325
	9.2	Atomic orbitals and their energies	330
	9.3	Spectroscopic transitions and selection rules	339
	The s	tructures of many-electron atoms	340
	9.4	The orbital approximation	341
	9.5	Self-consistent field orbitals	349
	The s	pectra of complex atoms	350
	9.6	Linewidths	350
	9.7	Quantum defects and ionization limits	352
	9.8	Singlet and triplet states	353
	9.9	Spin-orbit coupling	354
	9.10	1 erm symbols and selection rules	357
	19.1	impact on astrophysics: Spectroscopy of stars	301
	Check	klist of key equations	362
	Furthe	er information 9.1: The separation of motion	362

	Furthe	er information 9.2: The energy of spin–orbit	
	intera	ction	363
	Discu	ssion questions	363
	Exerc	ises	364
	Proble	ems	365
	Math	ematical background 5: Vectors	368
	MB5.	1 Addition and subtraction	368
	MB5.	2 Multiplication	369
	MB5.	3 Differentiation	369
10	Mole	ecular structure	371
	The E	Born-Oppenheimer approximation	372
	Valen	ice-bond theory	372
	10.1	Homonuclear diatomic molecules	372
	10.2	Polvatomic molecules	374
		,	
	Mole	cular orbital theory	378
	10.3	The hydrogen molecule-ion	378
	10.4	Homonuclear diatomic molecules	382
	10.5	Heteronuclear diatomic molecules	388
	110.1	Impact on biochemistry: The biochemical	
		reactivity of O_2 , N_2 , and NO	394
	Mole	cular orbitals for polyatomic systems	395
	10.6	The Hückel approximation	395
	10.7	Computational chemistry	401
	10.8	The prediction of molecular properties	405
	Check	klist of key equations	407
	Furthe	er information 10.1: Details of the Hartree–Fock	
	metho	bd	408
	Discu	ssion questions	409
	Exerci	ises	409
	Proble	ems	410
	Math	ematical background 6: Matrices	414
	MB6.	1 Definitions	414
	MB6.:	2 Matrix addition and multiplication	414
	MB6.	3 Eigenvalue equations	415
11	Mole	ecular symmetry	417
	The s	ymmetry elements of objects	417
	11.1	Operations and symmetry elements	418
	11.2	The symmetry classification of molecules	420
	11.3	Some immediate consequences of symmetry	425
	Appli	cations to molecular orbital theory and	407
	spect	roscopy	42/
	11.4	Character tables and symmetry labels	427
	11.5	vanishing integrals and orbital overlap	433
	11.6	Vanishing integrals and selection rules	439

CONTENTS xxvi

Checklist of key equations	441
Discussion questions	441
Exercises	441
Problems	442

445

489

14 ____

12 Molecular spectroscopy 1: rotational and vibratio

onal	spectra
onal	spectra

Gene	ral features of molecular spectroscopy	446
12.1	Experimental techniques	446
12.2	Selection rules and transition moments	447
112.1	Impact on astrophysics: Rotational and	
	vibrational spectroscopy of interstellar species	447
Pure	rotation spectra	449
12.3	Moments of inertia	449
12.4	The rotational energy levels	452
12.5	Rotational transitions	456
12.6	Rotational Raman spectra	459
12.7	Nuclear statistics and rotational states	460
The v	ibrations of diatomic molecules	462
12.8	Molecular vibrations	462
12.9	Selection rules	464
12.10	Anharmonicity	465
12.11	Vibration-rotation spectra	468
12.12	Vibrational Raman spectra of diatomic molecules	469
The v	ibrations of polyatomic molecules	470
12.13	Normal modes	471
12.14	Infrared absorption spectra of polyatomic	
	molecules	472
112.2 12.15	Impact on environmental science: Climate change Vibrational Raman spectra of polyatomic	473
	molecules	475
12.16	Symmetry aspects of molecular vibrations	476
Chec	klist of key equations	479
Furth	er information 12.1: Spectrometers	479
Furth	er information 12.2: Selection rules for rotational	
and v	ibrational spectroscopy	482
Discu	ission questions	484
Exerc	ises	484
Probl	ems	486

13	Molecular spectroscopy 2: electronic
	August 10 11 11 11 11

transitions

The characteristics of electronic transitions 489		
13.1	Measurements of intensity	490
13.2	The electronic spectra of diatomic molecules	491
13.3	The electronic spectra of polyatomic molecules	498
113.1	Impact on biochemistry: Vision	501

The fa	tes of electronically excited states	503
13.4	Fluorescence and phosphorescence	503
113.2	Impact on biochemistry: Fluorescence microscopy	507
13.5	Dissociation and predissociation	507
13.6	Laser action	508
Check	list of key equations	512
Furthe	r information 13.1: Examples of practical lasers	513
Discus	sion questions	515
Exerci	ses	515
Proble	ms	517
Mole	cular spectroscopy 3: magnetic resonance	520
The e	ffect of magnetic fields on electrons and nuclei	520
14.1	The energies of electrons in magnetic fields	521
14.2	The energies of nuclei in magnetic fields	522
14.3	Magnetic resonance spectroscopy	523
Nucle	ar magnetic resonance	524
14.4	The NMR spectrometer	525
14.5	The chemical shift	526
14.6	The fine structure	532
14.7	Conformational conversion and exchange	
	processes	539
Pulse	techniques in NMR	540
14.8	The magnetization vector	540
14.9	Spin relaxation	542
114.1	Impact on medicine: Magnetic resonance imaging	546
14.10	Spin decoupling	548
14.11	The nuclear Overhauser effect	548
14.12	Two-dimensional NMR	550
14.13	Solid-state NMR	551
Elect	on paramagnetic resonance	553
14.14	The EPR spectrometer	553
14.15	The g-value	553
14.16	Hyperfine structure	555
114.2	Impact on biochemistry and nanoscience:	

Spin probes	557
Checklist of key equations	559
Further information 14.1: Fourier transformation of the	
FID curve	559
Discussion questions	559
Exercises	560
Problems	561

15 Statistical thermodynamics 1: the concepts 564 565 The distribution of molecular states 565 **15.1** Configurations and weights 568

15.2 The molecular partition function

	The i	nternal energy and the entropy	574
	15.3	The internal energy	574
	15.4	The statistical entropy	576
	115.1	Impact on technology: Reaching very low	
		temperatures	578
	The c	anonical partition function	579
	15.5	The canonical ensemble	579
	15.6	The thermodynamic information in the partition function	581
	15.7	Independent molecules	582
	Chec	klist of key equations	585
	Furthe	er information 15.1: The Boltzmann distribution	585
	Furthe	er information 15.2: The Boltzmann formula	587
	Discu	ssion questions	588
	Exerc	ises	588
	Proble	ems	590
16	Stati	stical thermodynamics 2: applications	592
	Fund	amental relations	592
	16.1	The thermodynamic functions	592
	16.2	The molecular partition function	594
	Using	g statistical thermodynamics	601
	16.3	Mean energies	601
	16.4	Heat capacities	602
	16.5	Equations of state	605
	16.6	Molecular interactions in liquids	607
	16.7	Residual entropies	609
	16.8	Equilibrium constants	610
	116.1	Impact on biochemistry: The helix-coil transition	
		in polypeptides	615
	Checl	klist of key equations	616
	Furthe	er information 16.1: The rotational partition function	
	ofas	ymmetric rotor	617
	Discu	ssion questions	618
	Exerc	ises	618
	Proble	ems	619
17	Mole	cular interactions	622
	Elect	ric properties of molecules	622
	17.1	Electric dipole moments	622
	17.2	Polarizabilities	625
	17.3	Polarization	626
	17.4	Relative permittivities	628

Interactions between molecules 631 **17.5** Interactions between dipoles 631 117.1 Impact on medicine: Molecular recognition 640 and drug design

17.6 117.2	Repulsive and total interactions Impact on materials science: Hydrogen storage	642
	in molecular clathrates	643
Gase	s and liquids	643
17.7	Molecular interactions in gases	644
17.8	The liquid–vapour interface	645
17.9	Surface films	649
17.10	Condensation	652
Check	list of key equations	653
Furthe	r information 17.1: The dipole-dipole interaction	654
Furthe	r information 17.2: The basic principles of	
molec	ular beams	654
Discus	ssion questions	655
Exerci	ses	655
Proble	ems	656

18 Materials 1: macromolecules and self-assembly 659

Struc	ture and dynamics	659
18.1	The different levels of structure	660
18.2	Random coils	660
18.3	The mechanical properties of polymers	665
18.4	The electrical properties of polymers	667
18.5	The structures of biological macromolecules	667
Aggr	egation and self-assembly	671
18.6	Colloids	671
18.7	Micelles and biological membranes	674
Dete	mination of size and shape	677
18.8	Mean molar masses	678
18.9	The techniques	680
Chec	klist of key equations	688
Furth	er information 18.1: Random and nearly random coils	689
Discu	ssion questions	690
Exerc	ises	690
Proble	ems	691

19 Materials 2: solids

695

695

Crystallography **10.1** Lattices and unit cells

19.1	Lattices and unit cells	695
19.2	The identification of lattice planes	697
19.3	The investigation of structure	699
19.4	Neutron and electron diffraction	708
19.5	Metallic solids	709
19.6	Ionic solids	711
19.7	Molecular solids and covalent networks	714
119.1	Impact on biochemistry: X-ray crystallography	
	of biological macromolecules	715

xxviii CONTENTS

The properties of solids	
19.8 Mechanical properties	717
19.9 Electrical properties	719
119.2 Impact on nanoscience: Nanowires	723
19.10 Optical properties	724
19.11 Magnetic properties	728
19.12 Superconductors	731
Checklist of key equations	733
Further information 19.1: Solid state lasers and	
light-emitting diodes	733
Discussion questions	734
Exercises	735
Problems	737
Mathematical background 7: Fourier series and	
Fourier transforms	740
MB7.1 Fourier series	740
MB7.2 Fourier transforms	741
MB7.3 The convolution theorem	742

PART 3 Change 743

20 Molecules in motion

Molecular motion in gases		745
20.1	The kinetic model of gases	746
120.1	Impact on astrophysics: The Sun as a ball of	
	perfect gas	752
20.2	Collisions with walls and surfaces	753
20.3	The rate of effusion	754
20.4	Transport properties of a perfect gas	755
Mole	cular motion in liquids	758
20.5	Experimental results	758
20.6	The conductivities of electrolyte solutions	759
20.7	The mobilities of ions	760
120.2	Impact on biochemistry: Ion channels	764
Diffus	sion	766
20.8	The thermodynamic view	766
20.9	The diffusion equation	770
20.10	Diffusion probabilities	772
20.11	The statistical view	773
Check	klist of key equations	774
Furthe	er information 20.1: The transport characteristics	
of a pe	erfect gas	775
Discus	ssion questions	776
Exerci	ses	777
Proble	ems	779

21 The rates of chemical reactions 782 **Empirical chemical kinetics** 782 **21.1** Experimental techniques 783 21.2 The rates of reactions 786 21.3 Integrated rate laws 790 21.4 Reactions approaching equilibrium 796 21.5 The temperature dependence of reaction rates 799 Accounting for the rate laws 802 21.6 Elementary reactions 802 803 21.7 Consecutive elementary reactions **Examples of reaction mechanisms** 809 21.8 Unimolecular reactions 809 **21.9** Polymerization kinetics 811 **21.10** Photochemistry 815 121.1 Impact on biochemistry: Harvesting of light during plant photosynthesis 822

Checklist of key equations	825
Discussion questions	825
Exercises	826
Problems	828

831

22 Reaction dynamics

745

831 **Reactive encounters** 832 **22.1** Collision theory 839 22.2 Diffusion-controlled reactions 842 22.3 The material balance equation 843 Transition state theory 22.4 The Eyring equation 844 848 22.5 Thermodynamic aspects 851 The dynamics of molecular collisions 851 22.6 Reactive collisions 852 22.7 Potential energy surfaces Some results from experiments and calculations 853 22.8 856 The dynamics of electron transfer 857 22.9 Electron transfer in homogeneous systems 22.10 Electron transfer processes at electrodes 861 867 122.1 Impact on technology: Fuel cells 868 Checklist of key equations Further information 22.1: The Gibbs energy of activation of 868 electron transfer 869 Further information 22.2: The Butler-Volmer equation 871 **Discussion questions** 871 Exercises 873 Problems

CONTENTS xxix

23	Cata	lysis	876
	Hom	ogeneous catalysis	876
	23.1	Features of homogeneous catalysis	876
	23.2	Enzymes	878
	Hete	rogeneous catalysis	884
	23.3	The growth and structure of solid surfaces	885
	23.4	The extent of adsorption	888
	23.5	The rates of surface processes	894
	23.6	Mechanisms of heterogeneous catalysis	897
	23.7	Catalytic activity at surfaces	899

123.1 Impact on technology: Catalysis in the chemical industry	900
Checklist of key equations	903
Further information 23.1: The BET isotherm	903
Discussion questions	904
Exercises	904
Problems	906
Resource section	909
Answers to exercises and problems	948
Index	959

Impact on astrophysics

19.1	Spectroscopy of stars	361
112.1	Rotational and vibrational spectroscopy of interstellar species	447
120.1	The Sun as a ball of perfect gas	752

Impact on biochemistry

12.1	Differential scanning calorimetry	62
16.1	Energy conversion in biological cells	211
110.1	The biochemical reactivity of O ₂ , N ₂ , and NO	394
113.1	Vision	501
113.2	Fluorescence microscopy	507
114.2	Spin probes	557
116.1	The helix-coil transition in polypeptides	615
119.1	X-ray crystallography of biological macromolecules	715
120.2	Ion channels	764
121.1	Harvesting of light during plant photosynthesis	822

Impact on biology

12.2	Food and energy reserves	70
15.1	Osmosis in physiology and biochemistry	175
17.1	Electron microscopy	259

Impact on engineering

13.1	Refrigeration				
------	---------------	--	--	--	--

103

Impact on environmental science

11.1	The gas laws and the weather	28
112.2	Climate change	473

Impact on materials science

13.2	Crystal defects	112
15.2	Liquid crystals	188
117.2	Hydrogen storage in molecular clathrates	643

Impact on medicine

114.1	Magnetic resonance imaging	546
117.1	Molecular recognition and drug design	640

Impact on nanoscience

18.1	Quantum dots	295
18.2	Scanning probe microscopy	299
119.2	Nanowires	723

Impact on technology

14.1	Supercritical fluids	142
16.2	Supramolecular chemistry	226
16.3	Species-selective electrodes	239
115.1	Reaching very low temperatures	578
122.1	Fuel cells	867
123.1	Catalysis in the chemical industry	900