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Among the questions which have been raised concerning the structure of a
connected semisimple Lie group are those relating to conjugacy of its Cartan sub-
groups.

In case the group is either compact or complex, it is a well-known fact (and in-
deed a fundamental one) that all Cartan subgroups are conjugate. Itisalso known
that this is not true in general. The interest in the general case is heightened as
a result of statements of Harish-Chandra! relating the “classes of conjugate Cartan
subgroups and the various ‘series’ of unitary representations which occur in the
Plancherel formula.”

It is clear that one may reduce the problem to a consideration of the conjugate
classes of Cartan subalgebras (C.S.’s) of a real, simple Lie algebra (conjugate, under
the action of the adjoint group).2 Moreover, in view of the above, one may restrict
the Lie algebra to be a real noncompact form of 4;, B, C;, D;, G,, Fs, Es, E;, and Es.
It is the purpose of this note to list a series of general theorems enabling us to “de-
termine’’ the conjugate classes in every one of the real forms mentioned above. By
““determine” is meant, among other things, giving (1) the number of conjugate
classes, (2) the number of classes for which the “vector part” (or “toroidal part’’)
of a C.S. in that class has a given dimension, (3) a characterization of each conjugacy
class with respect to the full group of automorphisms. (This may be done in all
but a few cases by giving the centralizers of the “vector and toroidal parts” of a
C.8. in that class. A more convenient type of characterization may be given in
the case of all but one classical algebra.)

In a succeeding note, tables will be given listing enough of this information so
that every C.S. (up to conjugacy by the full group of automorphisms) in all the real
forms mentioned above may be identified. A list of all W-subspaces of the simple
complex algebras up to C-conjugacy (see below) will be included also. Proofs and
further elaboration will appear elsewhere.

Let go be a real, semisimple Lie algebra. Let Gy be the adjoint group. Let
fo be the subalgebra of go corresponding to a maximal compact subgroup K, ¢ Gi.
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Let po be the orthogonal complement to f, in go with respect to the Cartan-Killing
bilinear form B. Then g, = £, + po.

Let mo be a maximal commutative subalgebra of gy contained in p,. The group
K, leaves p) invariant. Let W, be the group of transformations of m, induced by
the subgroup of K, which leaves m, invariant. W, is a finite group.

Let b be a Cartan subalgebra. Let B, the ‘“vector part” (§+, the “toroidal
part”), be the subspace {X € b0| the eigenvalues of adX are real (pure imaginary) }
Then bo = f)0+ + f)o_.

We will call a Cartan subalgebra § standard if h* € £, and h; ¢ m, c p,.

Theorems, essentially equivalent to our first four theorems, have been proved
independently (unpublished) by A. Borel.

TaeorEM 1. Every Cartan subalgebra is conjugate to a standard Cartan sub-
algebra. Moreover, two standard Cartan subalgebras are themselves conjugate if and
only if their “vector parts” are conjugate with respect to W .2

Let g be the complexification of go. Let b be the complexification of a Cartan
subalgebra of gy containing m,. Let b’ be the real subspace of § spanned by the
roots. Then h = b? 4+ 7h’ and go n b’ = m,. We may regard the Weyl group W
or the Cartan group C associated with g as operating in §°.

We will call a subspace of §’ a W-subspace if it is the eigenspace belonging to
the eigenvalue —1 of an element of order 2 in W.

Lemma 1. | c Y 4s a W-subspace if and only if it has a basis of orthogonal (with
respect to B) roots.

Where [ means the orthogonal complement of [ with respect to B in §’, we have

THEOREM 2. 1 ¢ my ¢s the vector part of a standard C.S. of o if and only if n is of
the formmy n [, where [ ¢ moand [ is a W-subspace.

TaeoREM 3. The group W, is obtained by the transformations induced on my by
the subgroup of W leaving my fixed. Moreover, two W-subspaces of my are conjugate
with respect to W if and only if they are conjugate with respectto W.

We are thus reduced to the study of how W conjugates the W-subspaces. As-
sume that g is simple. We begin with Theorem 4, which tells how W acts on one-
dimensional W-subspaces.

THEOREM 4. The orbits of W acting on the set of roots are the subsets of all roots
having the same length.

For a subspace [ ¢ §’ let g[(] denote the complex subalgebra of g generated by
[and those root vectors whose roots are in I.  Let {, denote the hyperplane in b° or-
thogonal to the root .

For any root a we will say that a root g is related to « if (a) B(a, 8) = 0; (b)
B(a, @) = B(8, B); (c) for any root ¢, B(e, ¢) = 0, ¢ # =B implies B(8, ¢) = 0.

If we now say that a root is related to itself and its negative, we have

TaeorEM 5. The relation above is an equivalence relation partitioning the roots
into equivalence classes.

Clearly C preserves these classes. If we order the roots in any one of the usual
ways and define n, to be the number of positive roots in the equivalence class of
¢, we have

TrEOREM 6. gl[f,] = (n, — 1)4: @ g,, where g, is simple or simple @D, (the
latter case occurs only in A;).® Also, the n, —1 copies of A, are in fact §[(¢:)], where
@, runs through positive roots other than ¢ which are related to .
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The key factor in our method of determining the class of W-conjugate W-sub-
spaces* is the simplicity of [g,, g,] in the above theorem; it enables us to repeat
the use of Theorem 4, that is, in view of Lemma 1 and

LemMA 2. For any X e B’ let Ax be the set of roots ¢ such that B(p, X) = 0; then,
tf o € W leaves X invariant, o is generated by the reflections through f, for ¢ € Ax.

We need

Lemma 3. Let W, be the (commutative) subgroup of W generated by reflections
through {g for all B related to . If ¢ is not related to « or orthogonal to «, then the set
=W 0 is a union of equivalence classes.

LemMma 4. If [ 4s a W-subspace and o € |, then, if 8 is related to «, either 8 ¢ | or
B e I+

For a W-subspace |, let n ¢ | be the subspace generated by all « ¢ [ such that [
contains all 8 related to «. Both n and n* n [ are W-subspaces. We will call |
complete if n = |, incomplete if n > |, and totally incomplete if n = 0.5

Because B; = (', our definitions make B, a degenerate case (its W-subspaces up
to W-conjugacy are obviously 0, (o), (¥), and §°, where ¢ and ¢ are roots and B(¢,
¥) = 2B(¢, ¢)). The following theorems are our main results:

THEOREM 7. Assume that g is classical but not By; then two W-subspaces I; and
[y are conjugate with respect to the Cartan group if and only if

dim Il = dim IQ, dim m = dim To.

They are conjugate with respect to W if and only if these conditions hold, with the fol-
lowing exceptions: ¢ = Dy, dim [ = 2, dim 1 = 0 (three conjugate classes), and g =
Doy, k > 3, dim | = k, dimn = 0 (two conjugate classes).

For the exceptional Lie algebras two W-subspaces are W-conjugate if and only if
they are C-conjugate. For any subspace [ c ¥, let A[l] be the set of rootsin[. We
now have

THEOREM 8. If g vs any simple complex Lie algebra and 1, and Iy are two W-sub-
spaces, then ; and l; are C-congugate if and only if there exist (one to one, onto) maps
tandj (i: AlL]— A[L:], 7: A[ht] — A1 ]) which preserve the structure (length, addsi-
tion, negatives), with the sole exception ¢ = Do, k > 3, dim |y = k, dimmy = 0, dim
l, = k,dimn, = 2. In this case maps i and j exist but l; and 1y are not C-conjugate.

Returning to a real form g, of g and a C.S. h € go, we first observe that 75, and
ho~ are complementary orthogonal subspaces of some ¥ c g. Consequently, we
may speak of A[zh+]and A[h—]. We have, finally,

THEOREM 9. For a real, simple Lie algebra g, the structure of A[i%o+], together with
that of A[ho~], uniquely determines the conjugacy class of any C.8. Y under the full
group of automorphisms of o, with the sole exception § = Doy, k > 3; g0 s the unique
real form for which dim mo = 2k. For this case, corresponding to the pair of non-
congugate W-subspaces l; and Iy of Theorem 8, there exist two distinct conjugate classes
of C.8.’s both determining, for a representative C.S. Y, of either class, identical struc-
tures for Aliho*] and for A[h—].

We may substitute the adjoint group for the full automorphism group in the above
statement, altering only the exceptional case by letting k > 2. Corresponding now to
the exceptional W-subspaces of Theorems 7 and 8 there are three distinct conjugacy
classes of €.8.’s all determining, for a representative C.S. by, identical structures for
Althet] and for A[%,—].
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* Based on research supported in part under Contract N6ori-02053, monitored by the Office of
Naval Research.

1 Harish-Chandra, “Plancherel Formula for the 2 X 2 Real Unimodular Group,” these Pro-
CEEDINGS, 38, 337-342, 1952.

2 In general, the word ‘“‘conjugate” will be used to mean transformable with respect to the ac-
tion of the group under consideration. When speaking of conjugacy of C.S.’s, this group will be
understood to be the adjoint group unless the full group of automorphisms is specified.

3 Dy, the one-dimensional complex Lie algebra, is not semisimple, and D: = A4; @ 4, is not simple.

“* Wesay that l; € B, I € h?are W- (resp. C-) conjugate if that can be carried into one another
by an element W (resp. C).

® A maximal W-subspace contained in the subspace m, < be associated with a real form is

always complete or totally incomplete.
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