
Chapter 2
Essential Comparisons of the Matlab and R
Languages

We assume a working knowledge of either Matlab or R. For either language, there
are many books that describe the basics for beginners. However, a brief comparison
of the two languages might help someone familiar with one language read code
written in the other.

Matlab and R have many features in common. Some of the differences are trivial
while others can be troublesome. Where differences are minor, we offer code in only
one language, which will be often R.

We will use typewriter font for any text meant to be interpreted as Matlab or R
code, such as plot(heightfd).

2.1 A Quick Comparison of Matlab and R Syntax

There are similarities and differences in the syntax for Matlab and R.

2.1.1 Minor Differences

Here is a quick list of the more commonly occurring differences so that you easily
translate a command in one language in that in the other:

• Your code will be easier to read if function names describe what the function
does. This often produces a preference for names with words strung together.
This is often done in Matlab by connecting words or character strings with under-
scores like create fourier basis. This is also acceptable in R. However,
it is not used that often, because previous versions of R (and S-Plus) accepted an
underscore as a replacement operator. Names in R are more likely to use dots or
periods to separate strings, as in create.fourier.basis used below.

J.O. Ramsay et al., Functional Data Analysis with R and MATLAB, Use R,

© Springer Science + Business Media, LLC 2009

21
DOI: 10.1007/978-0-387-98185-7_2,

22 2 Essential Comparisons of the Matlab and R Languages

• The dot or period in Matlab identifies a component of a struct array . This
is roughly comparable to the use of the dollar sign ($) in R to identify components
of a list, though there are differences, which we will not discuss here.

• Vectors are often defined using the c() command in R, as in rng = c(0,1).
In Matlab, this is accomplished using square brackets, as in rng = [0,1].

• On the other hand, R uses square brackets to select subsets of values from a
vector, such as rng[2]. Matlab does this with parentheses, as in rng(2).

• R has logical variables with values either TRUE or FALSE. Recent releases of
Matlab also have logical variables taking values true or false.

• Previous releases of R, S, and S-Plus allowed the use of T and F for TRUE and
FALSE. Recent releases of R have allowed users to assign other values to T or F
for compatibility with other languages. This has the unfortunate side effect that
R code written using T or F could throw an error or give a wrong answer without
warning if, for example, a user defined F = TRUE or F = c(’Do’, ’not’,
’use’, ’F’, ’as’, ’a’, ’logical.’).

• In both languages, numbers can sometimes be used as logicals; in such cases, 0
is treated as FALSE and any nonzero is TRUE.

• If a line of code is not syntactically complete, the R interpreter looks for that
code to continue on the next line; Matlab requires the line to end in ”...” if the
code is to be continued on the next line.

• Matlab normally terminates a command with a semicolon. If this is not done,
Matlab automatically displays the object produced by the command. Lines in R
can end in a semicolon, but that is optional.

In this book, where we give commands in both languages, the R version will
come first and the Matlab version second. But we will often give only one version;
in most such cases, the conversion is just a matter of following these rules.

The matter of the assignment operator needs at least a brief comment. In R the
correct way to write the transfer of the value produced by the right side of a state-
ment to the object named on the left side is with the two-character sequence <-. We
like this notation, and prefer to use it in our own work. However, there was from the
beginning a resistance among users of R, S and S-PLUS to the use of two characters
instead of one. The underscore was allowed but created problems, if only because
of incompatibility with many other languages like Matlab that allowed the under-
score in names. Recent versions of R allow the use of = for replacement in most
contexts, but users are warned that there are situations where the code becomes am-
biguous and may generate errors that can be hard to trace. With this in mind, we
notwithstanding opt for = in this book, primarily to keep statements readable and to
minimize the differences between R and Matlab. (Matlab uses only = for replace-
ment.)

2.1 A Quick Comparison of Matlab and R Syntax 23

2.1.2 Using Functions in the Two Languages

The ways in which arguments are passed to functions and computed results returned
is, unfortunately, different in the two languages. We can illustrate the differences by
the ways in which we use the important smoothing function, smooth.basis in R
and smooth basis in Matlab. Here is a full function call in R:

smoothlist = smooth.basis(argvals, y, fdParobj,
wtvec, fdnames)

and here is the Matlab counterpart:

[fdobj, df, gcv, coef, SSE, penmat, y2cMap] = ...
smooth_basis(argvals, y, fdParobj, wtvec, fdnames);

An R function outputs only a single object, so that if multiple objects need to
be returned, as in this example, then R returns them within a list object. But Matlab
returns its outputs as a set of variable(s); if more than one, their names are contained
within square brackets.

The handy R feature of being able to use argument names to provide any subset
of arguments in any order does not exist in Matlab. Matlab function calls require
the arguments in a rigid order, though only a subsequence of leading arguments can
be supplied. The same is true of the outputs. Consequently, Matlab programmers
position essential arguments and returned objects first.

For example, most of the time we just need three arguments and a single output
for smooth.basis and its Matlab counterpart, so that a simpler R call might be

myfdobj = smooth.basis(argvals, y, fdParobj)$fd

and the Matlab version would be

myfdobj = smooth_basis(argvals, y, fdParobj);

Here R gets around the fact that it can only return a single object by returning a
list and using the $fd suffix to select from that list the object required. Matlab just
returns the single object. If we want the third output gcv, we could get that in R by
replacing fd with gcv; in Matlab, we need to provide explicit names for undesired
outputs as, [fdobj, df, gcv] in this example. R also has the advantage of
being able to change the order of arguments by a call like

myfdobj = smooth.basis(y=yvec, argvals=tvec,
fdParobj)$fd

In order to keep things simple, we will try keep the function calls as similar as
possible in the examples in this book.

24 2 Essential Comparisons of the Matlab and R Languages

2.2 Singleton Index Issues

The default behavior in matrices and arrays with a singleton dimension is exactly
the opposite between R and Matlab: R drops apparently redundant dimensions, com-
pressing a matrix to a vector or an array to a matrix or vector. Matlab does not.

For example, temp = matrix(c(1,2,3,4),2,2) sets up a 2× 2 ma-
trix in R, and class(temp) tells us this is a "matrix". However, class(
temp[,1]) yields "numeric", which says that temp[,1] is no longer a ma-
trix. If you want a matrix from this operation, use temp[,1, drop=FALSE].
This can have unfortunate consequences in that an operation that expects temp[,
index] to be a matrix will work when length(index) > 1 but may throw
an error when length(index) = 1. If A is a three-dimensional array, A1 =
A[,1,] will be a matrix provided the first and third dimensions of A both have
multiple levels. If this is in doubt, dim(A1) = dim(A)[-2] will ensure that A
is a matrix, not a vector as it would be if the first or third dimensions of A were
singleton.

Matlab has the complementary problem. An array with a single index, as in temp
= myarray(:,1,:), is still an array with the same number of dimensions. If you
want to multiply this by a matrix or plot its columns, the squeeze() function will
eliminate unwanted singleton dimensions. In other words, squeeze(temp) is a
matrix, as long as only one of the three dimension of temp is a singleton.

A user who does not understand these issues in R or Matlab can lose much time
programming around problems that are otherwise easily handled.

2.3 Classes and Objects in R and Matlab

Our code uses object-oriented programming, which brings great simplicity to the
use of some of the functions. For example, we can use the plot command in either
language to create specialized graphics tailored to the type of object being plotted,
e.g., for basis function systems or functional data objects, as we shall see in the next
chapter.

The notion of a class is built on the more primitive notion of a list object in R and
its counterpart in Matlab, a struct object. Lists and structs are used to group together
types of information with different internal characteristics. For example, we might
want to combine a vector of numbers with a fairly lengthy name or string that can be
used as a title for plots. The vector of numbers is a numeric object in R or a double
object in Matlab, while the title string is a character object in R and a char object
in Matlab.

Once we have this capacity of grouping together things with arbitrary proper-
ties, it is an easy additional step to define a class as a specific recipe or predefined
combination of types of information, along with a name to identify the name of the
recipe. For example, in the next chapter we will define the all-important class fd as,
minimally, a coefficient array combined with a recipe for a set of basis functions.

2.3 Classes and Objects in R and Matlab 25

That is, an fd object is either a list or a struct, depending on the language,
which contains at least two pieces of information, each prespecified and associated
with the class name fd. Actually, the specification for the basis functions is itself
also a object of a specific class, the basisfd class in R and the basis class in
Matlab, but let us save these details until the next chapter.

Unfortunately, the languages differ dramatically in how they define classes, and
this has wide-ranging implications. In Matlab, a class is set up as a folder or direc-
tory of functions used to work with objects of that class.

R has two different ways to define classes and operations on objects of different
classes, the S3 and S4 systems. The fda package for R uses the S3 system. In
this S3 standard, R recognizes an object to be of a certain class, e.g., fd, solely by
the possession of a ’class’ attribute with value ’fd’. The class attribute is
used by generic functions such as plot by methods dispatch, which looks first for
a function with the name of the generic followed by the class name separated by a
period, e.g., plot.fd to plot an object of class fd.

An essential operation is the extraction of information from an object of a par-
ticular class. Each language has simple classes that are basic to its structure, such
as the class matrix in either language. However, the power of an object-oriented
program becomes apparent when a programmer sets up new classes of objects that,
typically, contain multiple entities or components that may be named. These com-
ponents are themselves objects of various classes, which may be among those that
are basic to the language or in turn are programmer–constructed new classes.

There are two standards in R for “object oriented” programming, called “S3” and
“S4”. The fda package for R uses the S3 system, which is described in Appendix A
of Chambers and Hastie (1991). (The S4 system is described in Chambers (2008).)
In the S3 system, everything is a vector. Basic objects might be vectors of numbers,
either double precision or integers. Or they might be a vector of character strings
of varying length. This differs from Matlab, where a character vector is a vector
of single characters; to store names with multiple characters, you must use either a
character matrix (if all names have the same number of characters) or a cell array
of strings (to store names of different lengths). A list is a vector of pointers to other
objects. In R, component i of vector v is accessed as v[i], except that if v is a
list, v[i] will be a sublist of v, and v[[i]] will return that component. Objects
in R can also have attributes, and if an object has a class attribute, then it
is an object of that class. (Classes in the S4 system are much more rigidly defined;
see Chambers (2008).) If a list xxx in R has an attribute names = “a”, “b”, “c”,
say, these attributes can optionally be accessed via xxxa, xb, x$c. To see the
names associated with an object x, use names(x) or attr(x, ’names’). To
see all the attributes of an object x, use attributes(x). To get a compact
summary of x, use str(x). Or the class name can also be used in the language’s
help command: help myclass and doc myclass in Matlab or ?myclass
and help(myclass) in R.

For example, there are many reasons why one would want to get the coeffi-
cient array contained in the functional data fd class. In Matlab we do this by using
functions that usually begin with the string get, as in the command coefmat =

26 2 Essential Comparisons of the Matlab and R Languages

getcoef(fdobj) that extracts the coefficient array from object fdobj of the fd
class. Similarly, a coefficient array can be inserted into a Matlab fd object with the
command fdobj = putcoef(fdobj, coefmat). In Matlab, all the extrac-
tion functions associated with a class can be accessed by the command methods
myclass.

The procedure for extracting coefficients from an R object depends on the class
of the object. If obj is an object of class fd, fdPar or fdSmooth, coef(obj)
will return the desired coefficients. (The fd class is discussed in Chapter 4, and the
fdPar and fdSmooth classes are discussed in Chapter 5.) This is quite useful,
because without this generic function, a user must know more about the internal
structure of the object to get the desired coefficients. If obj has class fd, then
obj$coefs is equivalent to coef(obj). However, if obj is of class fdPar or
fdSmooth, then obj$coefs will return NULL; objfdcoefs will return the
desired coefficients.

As of this writing, a “method” has not yet been written for the generic coef
function for objects of class monfd, returned by the smooth.monotone function
discussed in Section 5.4.2. If obj has that class, it is not clear what a user might
want, because it has two different types of coefficients: obj$Wfdobj$coefs give
the coefficients of a functional data object that is exponentiated to produce some-
thing that is always positive and integrated to produce a nondecreasing function.
This is then shifted and scaled by other coefficients in obj$beta to produce the
desired monotonic function. In this case, the structure of objects of class monfd is
described in the help page for the smooth.monotone function. However, we can
also get this information using str(obj), which will work for many other objects
regardless of the availability of a suitable help page.

To find the classes for which methods have been written for a particular generic
function like coef, use methods(’coef’). Conversely, to find generic func-
tions for which methods of a particular class have been written, use, e.g., methods(
class=’fd’). Unfortunately, neither of these approaches is guaranteed to find
everything, in part because of “inheritance’ of classes, which is beyond the scope
of the present discussion. For more on methods in R, see Appendix A in Chambers
and Hastie (1991).

2.4 More to Read

For a more detailed comparison of R and Matlab, see Hiebeler (2009).
There is by now a large and growing literature on R, including many documents

of various lengths freely downloadable from the R website:

http://www.r-project.org

This includes books with brief reviews and publisher information as well as freely
downloadable documents in a dozen different languages from Chinese to Viet-
namese via “Documents: Other” both on the main R page and from CRAN. This

2.4 More to Read 27

is in addition to documentation beyond help that comes with the standard R in-
stallation available from help.start(), which opens a browser with additional
documentation on the language, managing installation, and “Writing R Extensions.”

