I.2 TYPICAL BEHAVIOR FOR ONE MAP

Before we study parametrized families of maps, we want
to analyze individual maps. We are interested in the possible
behavior of the successive images of an initial point X, on
the interval [-1,1] for a fixed map £f. For this we first
outline a graphical method for determining the iterates
xn==fn(x0). Here, we define fn(x0)==f(fn_l(x0)). The
following Figure I.5 shows how this is done through the rule:
Go from X to the graph of the function, from the graph to
the diagaonal, from the diagonal to the graph,... .
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Figure I.5. f£(x) = 1-1.4 x°

Note that the point marked x does not move at all; (%) =
f£(Xx) = Xx. We shall call x a fixed point of f. Physically
speaking, this means that if the system is at X at some
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time, it will remain there forever. Going back to our
continuous systems the Poincaré map will have a fixed point,
if the system has a closed (and hence periodic) orbit. Such
orbits are sometimes called limit cycles.

Figure I.6.

Let us now consider another map.
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Figure I.7. f(x) = 1~ .9x° .

This map has the property that the point il satisfies
£(%,) =%, and f£(X,) =%, or in other terms f°(X;) =¥, and
f2(§2)==§2. One says f has a periodic orbit of period 2




(which is implied by the fact that f£2

namely il’ §2 which are not fixed points for f).

has two fixed points

Again, we have an analogous picture for flows.
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Figure I.8.

We come now to a very important point of the discussion. If
a fixed point (or a periodic point) is to be relevant for

observations in the dynamical system described by £, we must
see whether it persists under small perturbations. There are

different kinds of perturbations envisageable, namely

(1) perturbation of the intial point: "Do systems in
nearby initial states evolve similarly?”

(2) perturbations of the function £f: "f is only
approximately known."

(3) stochastic perturbations: "The true equation is not
x,=f(x,_;) Dbut there will be noise terms which can
be modelled by saying that xn==f(xn_1)~+r(xn_l)
where r(x) is a small random step, i.e., a variation
of f(xn_l) with some a priori probability

distribution."

We shall analyze below in great detail the Case (l). The
motivations for this are two-fold: (A) There are some
situations where, if (1) is under control, then (2) and (3)
do not have an interesting effect: i.e., small perturbations
of f or small random steps do not affect the qualitative
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behavior of the system. (B) There are situations where (2)
and (3) are ill-understood and no results are available, (cf.

Kifer [1974] for a positive result in this direction).

However, we insist that considering large random forces
or large perturbations of f is a totally different enter-
prise, because one is in fact changing the whole problem, and
this has nothing to do with small perturbations of the system,
which are of main interest to us. We now concentrate, as
announced, on perturbations of the initial point. Let us thus
analyze the neighborhood of a fixed point. There are two
basic situations, with regards to the long-time (i.e., £7
for n large) evolution of a point near a fixed point.
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a) Figure I.9. b)

We see that if the slope f'(x) of £ at X satisfies
[£'(x)| <1 (angle <45° with horizontal, Fig. I.9A) then a
point x, near x will have the property that lim fn(xo)
= x and in fact this is true for all choices of X in a
sufficiently small neighborhood of xX. 1If, on the other hand,
as in Fig. I.9B, |f'(X)| > 1, then there is a neighborhood %
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of X such that fno(xo) ¢ % after some number n,
when Xg * X. The number n, of steps depends on X and on
the neighborhood. Note that the global form of £ can be
such that fn°+k(x0) is again in the neighborhood % for

of steps,

some later k, depending on Xq but this is not of concern
to us now. In the case |£'(X)]<1 we call x a stable
fixed point, in the opposite case X is called an unstable
fixed point. The case of |£f'(xX)|=1 will be dealt with in
Section II.4. The same kind of analysis can be made for
periodic points. E.g., in the case of a periodic point §1
of period 2, we saw that f2(§l) =§1, so we get a fixed point

2

if we consider £ instead of f. Thus the condition for

stability becomes

2

2 xpIs1 .

By the chain rule of differentiation,

220 - _ - - _ - - L2 =
£ (Xl) = f'(f(xl))f'(xl) = f'(xl)f'(xz)(—f (xz)),
i.e., the derivative is the product of derivatives along the
periodic orbit. We give an example of a stable periodic

orbit of period 2.

e
this curve is spiralling towards
the stable period
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N this is the stable period
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o~ the fixed point is now unstable
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X, x X,

Figure I.10.



Of course, all this may be easily translated to the case of
periodic orbits of arbitrary finite length. Also, we can pass
again to flows, and speak of stable limit cycles and unstable
limit cycles.

this is a stable
limit cycle

this curve is

)// attracted to

the limit cycle

Figure I.1ll.

In accordance with the point of view (1), we see that stable
periodic orbits are relevant for physical systems, because
many initial points will eventually show the same behavior

for large n. Namely, if X and x6 are two initial points
péar to a stable fixed point X, they will satisfy

lim £7(xy) = lim £7(x§) = X

n-o n->o
i.e., irrespective of the initial point, the system will
reach the final state X.

We can now ask and answer two important questions.
Ql: Do all points converge to some stable periodic orbit?

Q2: Can there be several distinct stable periodic orbits for
one map-?



13

The answer to Q2 is, under the hypotheses of negative
Schwarzian derivative:

TH1 There can be at most one stable periodic orbit (II.4.2).

Note the "at most"! We shall see later that there are
maps (in fact many) which have no stable periodic orbit. We

shall call them aperiodic maps. (But all continuous maps
from [-1,1] to itself have at least one unstable or stable
fixed point). For the moment, we shall concentrate on those

maps with a stable periodic orbit. Then it is reasonable to
ask question Ql. The answer is, of course, "no". Not all
points converge to a stable periodic orbit. It suffices to
look at Fig, I.10. There we have a stable periodic orbit
§1,§2 but we also have the point X, defined by f(X) =X:
obviously it is an unstable fixed point (slope >45°, and TH1
above) but the point x0==§ will satisfy fn(x0)==§ and

hence it does not tend to X1 §2. So we see that the "no" to

question Ql is unavoidable for many maps. But there is a more
reasonable alternative question.
Ql': How many points converge to the stable periodic orbit?

with the answer:

TH2 The measure of those points which do not converge to the

stable periodic orbit is zero. (II.5.7)}

Measure is Lebesgue measure, and if you are not familiar with
this concept, you can replace the statement by the weaker

one that those points which do not converge to the stable
periodic orbit do not form subintervals of the line [-1,1].

How can we determine whether a given map f has a stable
period or not? First of all, this question should not suggest
that by looking at the analytic form of £ (even if £f(x) =
1-ux2) one can decide on the occurrence or absence of a
stable periodic orbit. This is in fact a hopeless problem.
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We should rather ask how to find all the stable periodic
orbits whose periods are not too long. One has the following

criterion.

TH3 If f has a stable periodic orbit, then the initial
point 0 will be attracted to it. (II.4.2)

(Recall that 0 is the point for which £f'=0.) 1In
other words, 0 never belongs to the exceptional set described
in the preceding discussion. It is now legitimate to ask
whether this criterion is ever useful. 1In fact it is--at
least for short periods--and furthermore, it provides us with
a tool to construct a map without a stable periodic orbit.

This map is the map x->1- 2x2 (Fig. I.12).

>

-

Figure I.12. f(x) = l-2x2

If we take Xy = 0, then X, = f(xo) =1 and Xy = fz(xo) ==1
and then xn=-1 for all n=22. Therefore the image of
x,.=0 "settles down" after 2 iterations. But -1 (which is

0
obviously a fixed point of the map f) is not a stable fixed

point. Assume that f has a stable periodic orbit somewhere.
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Then the images of 0 will not be attracted to it, because

they stay at -1, and -1 is not part of the periodic orbit,
since it is a fixed point. We arrive thus at a contradiction
and it follows that f does not have a stable periodic orbit.

It is now natural to ask a new>question. What happens to
a typical initial point when there is no stable periodic
orbit? Two essential cases have been studied, but it is not
known whether there are other typical cases.

The first case occurs for f(x)=].-2x2, the case we
have just examined. Let us perform the following experiment.
0 0=0),and
iterate it 50000 times. Then we plot the histogram for the

We take as initial point x "any" point (not x
number of points which have fallen in each of the 200 inter-
vals [n/100, (n+1l)/100]), n=-100,-99,...,99. The result is
shown in Fig. I.13. This curve is very near to (w(l—yz)l/z)_l,

see Figure I.1l4. [The map £ (x) =l-2x2 was studied by Ulam

and von Neumann [1947]. If one takes as new coordinates

_ 4 . x+1
y = = (arc51n —3—-)- 1 B

then, in these new coordinates, f takes the form f(y)=
1-2|y|. This function has obviously no stable periodic or-

bits (the derivative is everywhere *2).]

The kind of behavior exhibited by the function £ is
called ergodic behavior. It says, in essence, that most points

visit every region of phase space with about equal probability.
But in fact, our example is much more chaotic in the following
sense. Consider two nearby points X, and x6 and their
respective evolutions xn==fn(x0), xﬁ==fn(x6). For our function

f, in general, no matter how near X is to xé, for some n,

the points X, and xé will eventually be noticeably separated.

Ruelle [1978(1)] has coined the term sensitive dependence on

initial conditions for this kind of behavior (II.7). It ex-

plains in a very appealing way the apparent incompatibility
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between the determinacy of a system, and the unpredictability
of its time evolution. 1In fact, any imprecision of our know-
ledge of Xgs DO matter how small, will eventually show up on
the scale of the interval. Furthermore, this amplification

of error can be quite violent and rapid, and for our previously
discussed example, each iteration amplifies the error by two,
since the derivative of 1-2|x| equals 2, and

f(xo)'-f(xb)ﬂ'f'(xo)(xo—xa) = 12(x0—x6) .
Another nice way to say this has been illustrated by Shaw

[1978]: One can view the sensitivity to initial conditions
as forgetting where a point comes from. Let us perform the

following game to see this. For the map x-*l--2x2 we choose
10000 initial points xél),...,xéloooo) near -1/4, (more
precisely xém) = -1/4 + (m-1)10-15) and we ask how many of

the points xém)==fn(xém)) have not hit the "target" where
we define the target to be the interval (-0.22, -.2). If
they hit it, they are "dead" and we pursue only the fate of

the "survivors ",

Start Target

Figure 1.15

We obtain an exponential
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survivors ~ 10000 exp(-n/1) ,

where the lifetime T is simply given by the probability of
hitting the target when the points are distributed according
to the histogram, Fig. I.13. Since the theoretical distri-
bution is P(y) = 1/(mV/l1-y2) we find

T~ (0.02P(x))" Y = so/m ‘/1-0.22 ~ 154

iterations. This fits the observed slope very well. On the
other hand, since the precision of our information decreases
by a factor of 2 per iteration, we shall have totally for-
gotten the initial data after about

-log (10"%°.10%) /109 2 ~ 36

iterations provided the initial interval does not hit the
target right away. So during the first 36 iterations, the
information is well retained and then an exponential falloff

can be observed. See Figure I.16.

We come now to a second case (which will turn out to be
quite rare but very crucial). This case occurs for the
function f(x) = l-—l.401155...x2. This function can be shown
to have no stable periodic orbits. The histogram looks like
in Figure I.17.

Note that this is not the histogram of a long stable
periodic orbit. But it can be shown that for almost all
initial choices of X, we will obtain the same histogram.
That is, almost all initial xo's are attracted to the same
stable, but nonperiodic orbit (III.3). The volume occupied
by this orbit is of (Lebesgue-) measure zero, i.e., the orbit
occupies no length (volume). This is in contrast to the first
case (of the function £f(x) = 1-2x2). Furthermore, there is

another marked difference: The map in question does not have

sensitive dependence with respect to initial conditions. 1In
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Figure I.16.

fact the orbits of nearby points stay close for almost all
choices of the initial points. We have thus an ergodic but
not a mixing behavior of the map in this case.

We wish to reformulate the "sensitive dependence" in a
more measurable fashion. If we want to know how much we
should expect two very close points to separate, we are
naturally led to examine the derivative Dfn==d/dx £1 of
£7. In the map £(x) = 1-2|x| which we have analyzed
before, it is obvious from the chain rule of differentiation

that |D fn(xo)l = 2" unless one of the points fk(xo)



20

Fig.

I.17.

Histogram for 50000 iterates of the point x

f(x) = 1- H.powwwmxm ;7 800 intervals.

.2 by the function

|-. 401155

1
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equals zero, and then the quantity Dfn(xo) is undefined for
n>k. We see thus that for most initial points the derivative
along the orbit diverges like an exponential, namely like
exp(n log 2). The number 1log 2 will then be called the
characteristic exponent or Liapunov exponent of the map f£f.

Now it so happens that many of the maps which show behavior
similar to x~>1-—2x2 have positive characteristic exponents
(while the maps like x-+1-1.401155...x> do have zero
characteristic exponents). If a map has an invariant ergodic
probability density (II.8) like [m(l-y%)1/2171
of the map 1-2x2, then for almost all initial points the

in the case

quantity lim __ 1/n log|Dfn(x0)| may exist and be positive,
say equal to o >0. This will then have the interpretation
that in the mean, two initial points which are very close

will start to separate at the rate ot during n iterations.
The exact relations between invariant measures, characteristic
exponents and sensitive dependence on initial conditions as
well as topological and Kolmogorov-Sinai entropy are very
subtle and not yet totally clarified, (cf. II.8).

IMPORTANT REMARK. When we have discussed above the
"typical" behavior of a map, we have always insisted on anal-
yzing what happens to most initial points. This is motivated
by the fact that we want to make general statements about the
behavior of dynamical systems. It happens very often that
while most of the initial points show a very regular behavior
(i.e., they approach a stable periodic orbit), some other
initial points--very few in the sense of Lebesgue measure--
behave rather in the ergodic way described above. Such a
situation has been described in the paper by Li and Yorke
[1975] "Period three implies chaos" (cf. II.3). They show,
among other things, that if a map has a (stable or unstable)

orbit of period three, then the map in question shows sensi-
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tive dependence with respect to initial conditions for an
uncountable set of pairs of initial points. But--and maybe
the paper did not make this sufficiently clear--for most
other points this need not be the case, and hence from a
physical point of view the chaotic behavior may be essentially

unobservable.





