
Chapter 2
Engineering Fundamentals of Balloons

Abstract Balloons are giant membrane structures that float in the thin atmosphere.
This chapter first presents the geometric design problems for the balloon body.
Specifically, the shape of axisymmetric natural-shape balloons is discussed, and
this design concept is then extended to superpressure balloons that are reinforced
by load tapes. Throughout this discussion, current progress in research on design
concepts that dramatically enhance balloon strength is explained in detail. The dy-
namics of a balloon flight are governed by a complex combination of fluid dynamics
and thermodynamics. A mathematical model that describes the motion of a balloon
is derived. This model includes the effects of the aerodynamical forces acting on
the balloon, and of the gas temperature variation caused by thermal conduction and
radiation between the balloon and surrounding atmosphere, the sun, the ground,
and outer space. The ascent, descent, and the lateral motion of balloons are then
explained in detail.

2.1 Buoyant Force and Attainable Altitude of Balloons

2.1.1 Principle of Buoyancy

The fact that balloons float in the atmosphere is founded upon the principle of buoy-
ancy discovered by Archimedes in the third century B.C. It states that “an object
submerged in a fluid experiences an upward force that is equal to the weight of the
same volume of fluid” [1]. This phenomenon can be explained as follows.

As shown in Fig. 2.1a, a rectangular solid is lowered into a fluid. According to
Pascal’s law, the object is subject to pressure from the fluid pressing on its surfaces
in directions normal to its surfaces. The pressures on the sides are counterbalanced,
so that the pressures acting on the upper and lower surfaces p1 and p2 are given by

p1 = ρgz1, (2.1)
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Fig. 2.1 Principle of buoyancy

p2 = ρgz2, (2.2)

where z1 and z2 are the respective depths of the upper and lower surfaces, ρ is the
fluid density, and g is the acceleration due to gravity. Hence, if we take the area of
the upper and lower surfaces to be S and the volume of the rectangular body to be V ,
the total sum of forces F in the upward direction that is imparted to the rectangular
solid by the fluid is given by

F = p2S− p1S = ρg(z2 − z1)S = ρgV. (2.3)

The same result can be obtained for an arbitrarily shaped body by summing thin
horizontal slices (Fig. 2.1b) and applying (2.3) to each plate.

2.1.2 Effect of Buoyancy from a Gas

Consider the increase in the upward force if a buoyant gas of volume V is injected
into a balloon. If we take ρa and ρg to be the densities of the external air and the
internal buoyant gas, respectively, the increase in upward force acting on the balloon
ΔF becomes

ΔF = (ρa −ρg)gV. (2.4)

The ρagV term on the right-hand side is the buoyant force from Archimedes’ prin-
ciple, and ρggV is the weight of the gas inside the balloon.

Thus, the contribution of the gas to the upward force is given by the difference
between the density of the external air and that of the internal buoyant gas. For
this reason, in subsequent descriptions, ΔρgV is referred to as the effective buoyant
force and it is a function of the difference in the densities Δρ = ρa −ρg.
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2.1.3 Attainable Altitude

Balloons float to an altitude at which the buoyant force equals the total weight
of the balloon system. Here the total weight of the balloon system includes
the weight of the injected buoyant gas. The weight prior to charging with gas
(i.e., the weight of the total system minus the weight of the buoyant gas) is referred
to as the weight of the balloon system. If the definitions given in the above section
are used, the balloon will float to an altitude at which the weight of the balloon
system equals the effective lifting force.

Figure 2.2 shows the relationship between the attainable altitude and the mass
of a balloon system for various balloon volumes. In this figure, the broken lines
indicate different membrane thicknesses, and the solid lines represent different bal-
loon volumes. The value on the horizontal axis at the intersection point of a solid
and a broken line indicates the mass of the main balloon made from a membrane
having the thickness indicated by the broken line. However, since the masses of
balloons having the same volume may differ a little according to their precise spec-
ifications, the values given in this figure are simple approximations. For reference,
open circles indicate the masses of some actual balloons.

If the balloon volume is specified, the mass of the balloon system can be deter-
mined from the desired attainable altitude. The total mass that can be carried is given
by the difference between the total mass of the balloon system and the mass of the
main balloon. In addition, the altitude given by the value on the vertical axis for the
intersection point represents the maximum altitude that can be achieved if the bal-
loon were to ascend with no payload attached. This demonstrates that it is important
to lighten the mass of the main balloon in order to reach high altitudes.
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The polyethylene film used in scientific balloons is typically about 20μm thick.
For the case when a 100,000-m3 balloon ascends to an altitude of 35 km, the total
mass of the balloon system would be about 730 kg; subtracting the balloon mass
(230 kg) from this value gives 500 kg as the total mass that can be carried. Although
the balloon volume varies depending on payload weight and desired attainable al-
titude, the volumes generally used lie between a few thousand and a few hundred
thousand cubic meters. The biggest operational balloon is a 1×106 m3 balloon used
by NASA, which is able to carry an approximately 4-ton payload up to an altitude
of 37 km. Another balloon is a 1.7×106 m3 balloon, which is able to carry a 700-kg
payload up to an altitude of 49 km.

Polyethylene films with thicknesses of 6μm or less are used in balloons designed
to carry light payloads to high altitudes. These balloons carry payloads of 100 kg
or less, and they are chiefly used for investigating special weather phenomena, for
performing atmospheric and space observations, and for checking wind direction
and wind speeds in advance in regions near or above 40 km when conducting high-
altitude balloon experiments [2]. The ISAS attained a record altitude of 53 km using
a 60,000 m3 balloon made of a 3.4-μm-thick film and loaded with a light payload of
about 5 kg [3].

Table Talk 1: How Archimedes Demonstrated the Existence of Buoyant Force

Balloon specialists should pay homage to the life of Archimedes, since ballooning
is completely dependent on the principle of buoyancy, which he discovered.

So, how was it possible to demonstrate the existence of a buoyant force back
in the third century B.C.? This is an interesting question. Fortunately, Archimedes’
writings have been translated into many languages [1]. The fact that such ancient
writings have been preserved is a miracle in itself and drives home their relevance
to the scientific fields of Western civilization.

The proof of the buoyant force may be found in volume one of Archimedes’ book
entitled “On Floating Bodies,” which contains two postulates and nine theses. The
basis of this proof is that when the same substance as the fluid is placed in a fluid,
it will neither sink nor float. That is, theses three and seven form the basis, which
state that a substance becomes lighter by an amount equal to the weight of the sub-
stance immersed. Subsequently, a proof is given by citing examples and refining the
principle. Of course, viewed from the perspective of modern science, it does not
constitute a rigorous proof. However, one impressive point is the fact that a defini-
tion of a fluid is presented as the initial postulate (i.e., an assumed axiom). Since
buoyancy is a phenomenon that occurs within fluids, Archimedes went through the
very proper step of first defining a fluid. If the properties of a fluid had been pursued
and extended to Pascal’s theorem, then Archimedes’ proof of buoyant forces would
have been more complete. Next, it is necessary to demonstrate the basis for Pascal’s
definition (actually, this has been omitted in the present book as well).

Another surprise is found in thesis two, which states, “the fluid’s surface assumes
a form having the same center as the earth.” It is thought it was already known in
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the Greek period that the Earth was round. However, the fact that they knew that
the surface of water is round suggests that they may have been one step away from
discovering the concept of universal gravitation.

2.2 Balloon Configurations

2.2.1 Historical Background and Overview of Problems

With the exception of metal shell balloons that are designed to float in high-
temperature and high-pressure environments such as Venus, balloon envelopes are
generally made from flexible film (membranes), particularly the envelopes of strato-
spheric balloons. With the exception of rubber balloons, the increase in volume
resulting from stretching of the film can be assumed to be negligible. Thus, the en-
velopes are manufactured from a lightweight, thin film in its fully expanded shape.

The shape design problem considers what the most appropriate balloon shape is.
The following three points must be taken into account:

1. The transmission of the load of the suspended payload to the film should be
distributed as uniformly as possible.

2. The balloon strength should be maximized in a way that minimizes the tensile
force and that ensures that the tensile force is uniformly distributed on the film
that is subject to pressure.

3. Maintaining the relationship of points (1) and (2) even when the shape of the
balloon changes due to expansion during ascent.

In the 150 years from the first flight of balloons to the end of the 1930s, the shapes
of balloons were not really studied theoretically and systematically in a way that
took into account the three points stated above. The sphere was the most frequently
used shape since it is best able to withstand pressure. Analyses in scientific books
started with such an assumption (e.g., [4]). Other balloons having different shapes
were also tried; these included balloons that were slightly deformed at the base of
the sphere and long cylinders with hemispheres on the top and bottom.

The first step toward modern scientific ballooning was the concept of the natural-
shape balloon proposed by R.H. Upson, which is presented in detail in Sect. 2.2.2.
Other shapes are briefly described to demonstrate the superiority of his proposed
shape over other shapes.

2.2.1.1 Spherical Balloons

If the weight and buoyant force of the membrane are neglected, the spherical shape
gives rise to a uniform biaxial tension in the membrane over the entire surface of the
pressurized balloon. For a tension T , a pressure on the membrane P, and a radius r,
we have
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Fig. 2.3 Classical method for suspending a payload. Multiple ropes (called a shroud) are hung
from the cloth that is installed like a curtain a little below the balloon’s equator, and the payload is
suspended at the lowest point. The balloon of Piccard mentioned in Sect. 2.1.1 followed this design

T =
rP
2

. (2.5)

At first glance, it might appear that a spherical balloon minimizes the load on the
membrane and is the optimal shape for a pressurized balloon. It also has the smallest
surface area for a given volume, thus complying with the demand to minimize the
weight.

However, there are several problems associated with spherical balloons. The first
problem is that there is no single point for suspending a heavy load, since the entire
surface of the balloon consists of a thin, uniform membrane. Consequently, the bot-
tom of the balloon has to be locally reinforced, or a net needs to be draped over the
upper half of the balloon as shown in the illustrations of classic balloons shown in
Figs. 1.2 and 2.3. Alternatively, a curtain is attached around the equatorial line, and
multiple ropes (called a shroud) are hung from this area; a payload is then suspended
from the ends of the ropes, which has the effect of distributing the load.

The second problem is that on the ground and during ascent the balloon is only
partially expanded, and thus its shape differs from a perfect sphere. During these
times, the tension in the membrane will be nonuniformly distributed. For these rea-
sons, spherical balloons are useful only for small balloons with light payloads.

2.2.1.2 Cylindrical Balloons

A cylindrical balloon is the one in which the central section of the envelope forms
a long cylinder and the upper and lower ends are closed off in some form. They are
useful for cases when it is easy to form a cylinder out of the membrane (or when the
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membrane is initially formed into a thick tube). The circumferential tensile forces
that act on the cylindrical section in the circumferential direction are given by the
product of the pressure differential on the membrane and the radius of the cylinder.
The sum total of the tensions acting parallel to the cylinder’s axis is given by the
product of the pressure and the cross-sectional area of the cylinder.

The longer and narrower the shape is, the greater the pressure resistance be-
comes; however, the volume to surface area ratio becomes worse. In a large strato-
spheric balloon, in contrast to a spherical balloon, the weight of the balloon itself is
large and this is a disadvantage. However, this shape is suitable when there is a large
lifting force per unit volume, such as in the high-density, low-altitude atmosphere
of Venus.

2.2.1.3 Tetrahedral Balloon

A balloon constructed in the shape of a regular tetrahedron is called a tetrahedral
balloon (Fig. 2.4). Because it lacks rotational symmetry, at first it appears to be
an unnatural shape for a balloon. But since it has features such as a flat top and a
bottom that converges to an acute angle, in some major points it resembles natural-
shape balloons that are discussed later. Its shape consists of a cylinder with a length
that is equal to half the circumference multiplied by cos 30◦, and both ends may be
closed off in directions orthogonal to each other.

As a result, since small balloons are easy to manufacture, they are used as auxil-
iary balloons at CNES for suspending a gondola on the ground (Fig. 2.4). Refer to
Sect. 3.4.2 for details on the launch method.

2.2.1.4 Natural-Shape Balloons

Spherical balloons, cylindrical balloons, and tetrahedral balloons all assume their
designed geometries only when they become fully inflated after ascent. When they
are injected with gas on the ground, only a portion of their top section is inflated.
R.H. Upson noticed that in the partially inflated section, there are a large number of
folds parallel to the longitudinal axis, as can be seen in Fig. 2.5. This is because there
is excess film in the circumferential direction. That is, because the length of the film
in the longitudinal direction is constant irrespective of the state of expansion, no
tension is generated in the film in the circumferential direction. Upson formulated a
balloon shape by assuming only a longitudinal tension. He published a seminal pa-
per on this concept in 1939 [5]. Upson obtained the idea for a natural-shape balloon
by observing that a large number of folds are formed parallel to the longitudinal axis
due to the excess film in the balloon.

If only an infinitesimal amount of excess film remains in the circumferential di-
rection at full inflation, a balloon shape can be formulated that maintains the same
type of shape from partial inflation through to full inflation. Subsequently, this pro-
posed shape (which came to be known as the natural-shape balloon) played a major
role in advancing ballooning from an era of trial and error to an era of scientific
research.
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Fig. 2.4 Tetrahedral balloons being used by CNES. (in this example, two tetrahedral balloons are
being used.) (courtesy of CNES)

However, although the formula expressing the shape has a simple form (see later
discussion), it cannot be solved analytically. Upson was only able to achieve a simi-
lar form through using an approximation. Attempts were made in the 1940s to deter-
mine a solution by using an analog computer to draw the balloon shape with a pen
recorder; this work was done at the University of Minnesota, which was one of the
driving forces behind balloon development in US. In the early 1960s, Smalley at the
NCAR systematically derived accurate balloon shapes for various conditions by per-
forming numerical calculations using a digital computer, which had reached a usable
stage. These solutions were applied extensively to designing actual balloons [6].

The natural balloon shape, which was first formulated by Upson and then practi-
cally realized by Smalley, is a completely rotationally symmetrical body made only
of film. At around the same time, fiber reinforcement technology, which involves
vertically inserting bundles of high-strength reinforcing fibers (called load tapes) at
fixed intervals, started to be applied in the construction of large balloons (Fig. 1.4).
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Fig. 2.5 Top of a balloon partially inflated on the ground

This technology increases the envelope’s resistance to pressure, enabling heavier
payloads to be suspended. In this case, because localized distortions in the film
form between adjacent load tapes, the lateral cross section of the envelope is not a
perfect circle (Fig. 2.19) and the balloon shape is no longer rotationally symmetrical.
Naturally, the film tension is not uniaxial in the meridional (i.e., longitudinal) direc-
tion, but it is biaxial in the both the circumferential and meridional directions. How-
ever, the overall balloon shape can be viewed as being approximately the natural
shape. As a result, problems arising from differences between actual balloons with
and without load tapes were disregarded, and were not fully elucidated.

In 1998, two of the authors of this book (N. Yajima and N. Izutsu) reexamined
the shape design problem starting from its fundamentals, and they proposed the
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“three-dimensional (3D) gore design concept” [7]. This concept involves intention-
ally forming bulges having small local radii between adjacent load tapes. In this
concept, the distinction between the roles of the load tape and the film are well de-
fined, namely the load tape receives all of the forces in the meridional direction,
and the film receives the forces generated by the pressure as an uniaxial tension in
the circumferential direction. Since only a uniaxial tension is generated in the film,
this concept both inherits and advances Upson’s concept, and enables a consistent
understanding of the balloon-shape design problem, both for cases when a load tape
is present and when it is absent.

Moreover, this concept can be used to optimize the tension generated in the film
to a small constant amount that is independent of the balloon volume. A super-
pressure balloon, which requires a high resistance to pressure, becomes feasible by
applying this extended natural balloon shape design concept, since a balloon can
be made by rational design making use of a thin, lightweight film if necessary. The
3D gore design concept solves a longstanding issue of how to construct a practical
super-pressure balloon. In the following section, we give a detailed mathematical
description of the natural-shape balloon concept, which represents the foundation
of balloon shape design.

2.2.2 Natural-Shape Balloon Concept

As the shape a in Fig. 2.6 shows, at the time of launch a balloon is partially inflated
with the lifting gas only in one section. As it ascends into the sky, it expands in the
manner shown by the shape b, and ultimately becomes the fully inflated shape c in
the figure when it attains its level flight altitude.

In this section, we determined the shape of balloons made of film, the stretching
of which is small enough to be ignored, and the process by which these balloons
expand in the manner described above. In the first stage in this section, no load tape
is inserted for reinforcement, and an axisymmetric (i.e., rotationally symmetrical)
shape is considered. A description extending to balloons that do have load tape is
presented in Sect. 2.2.3.

2.2.2.1 General Expression where there is Biaxial Tension

Generally, only biaxial tensile stresses are considered to act on thin films such as
those in balloons, and other stresses (i.e., compressive and shear stresses) can be
disregarded. Thus, we first formulate the shape for the case when biaxial forces act
in the film as a generalization for determining the natural-shape balloon described
in the previous section.

As shown in Fig. 2.7, the balloon film can be represented by the curved surface
formed when curve C is rotated around the A-axis. The origin for curve C having
an axis of rotation A is set to be the base or nadir of the balloon P1, and its endpoint
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a(Δp=0)

b(Δp=0)

c(Δp=0)

a(Δpb<0)

b(Δpb<0)

c(Δpb=0)

d(Δpb>0)

e(Δpb>>0)

Venting duct

Fig. 2.6 The typical shapes of balloons categorized as a natural-shape balloon. Shape a and b
show partial inflation; shape c shows full inflation of a zero-pressure balloon; shape d and e show
instances when the balloon internal pressure is greater than the surrounding atmospheric pressure
(super-pressure balloon). The dotted lines at Δp = 0 indicate the heights at which the pressures
inside and outside the balloon are the same
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Fig. 2.7 Definition of the surface element on the balloon envelope that is formed by rotating curve
C around axis A
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is the apex of the balloon P2. The length from P1 along the curve C is represented
by s. The overall length of curve C is designated as the length of the balloon and
is represented by �s. The radius of curvature of curve C is denoted by R, the angle
formed by the line tangent to curve C and the axis of rotation is denoted by θ , and
the distance from curve C to the axis of symmetry A is denoted by r. In addition,
as shown in the figure, the height from P1 at the base of the balloon to each point
on curve C is represented by z. The height of point P2 (i.e., the distance P1 −P2)
is referred to as the height of the balloon. In addition, the maximum value of r is
represented by rmax, and the value for 2rmax is called the balloon diameter.

The angle in a plane perpendicular to the rotational axis A is ϕ , and the dynamic
balance for surface element rdϕRdθ(= rdϕds) depicted in Fig. 2.7 is considered.
The tension per unit length acting on this section of element (Fig. 2.8) is represented
by Tθ over surfaces of constant ϕ and by Tϕ over surfaces of constant θ . The actual
mass per unit area of balloon film is taken to be we, and the difference between
the internal pressure of the balloon and the surrounding atmospheric pressure is Δp
(Δp is defined to be positive when the internal pressure is higher than atmospheric
pressure). Thus, balancing equations for the z direction and the r direction gives
(2.6) and (2.7), respectively.

(Tθ +
dTθ

2
)(r +

dr
2

)dϕ cos(θ +
dθ
2

)− (Tθ −
dTθ

2
)(r− dr

2
)dϕ cos(θ − dθ

2
)

−rdϕwegds− rdϕΔpdssinθ = 0
, (2.6)

(Tθ +
dTθ

2
)(r +

dr
2

)dϕ sin(θ +
dθ
2

)− (Tθ −
dTθ

2
)(r− dr

2
)dϕ sin(θ − dθ

2
)

−2Tϕ dssin
dϕ
2

+ rdϕΔpdscosθ = 0
, (2.7)

where g is the acceleration due to gravity.
Rearranging (2.6) and (2.7) by eliminating the higher-order terms yields the

following.

dq

q

r

rR

Tqrdj

Tjds Tjds

j

Dp·rdjds

Dp·rdjds·cosq

wegrdjds

dj

a Cross-section including 
    the axis of rotation 

b Cross-section perpendicular to 
    the axis of rotation 

Fig. 2.8 Tension and pressure acting on a surface element of the balloon: a Cross-section including
the axis of rotation; b Cross-section perpendicular to the axis of rotation
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d(rTθ )
ds

cosθ − rTθ sinθ
dθ
ds

− rweg−Δpr sinθ = 0, (2.8)

d(rTθ )
ds

sinθ + rTθ cosθ
dθ
ds

−Tϕ +Δpr cosθ = 0. (2.9)

Further rewriting (2.8) and (2.9) gives the following.

rTθ
dθ
ds

= Tϕ cosθ − rwegsinθ −Δpr, (2.10)

d(rTθ )
ds

= Tϕ sinθ + rwegcosθ . (2.11)

At the same time, if the density of the atmosphere and the density of gas inside the
balloon are denoted by ρa and ρg respectively, Δp can be expressed as

Δp = Δpb +(ρa −ρg)gz. (2.12)

Here, Δpb is the pressure difference at the base of the balloon P1(s = r = z = 0).
If the height at the point where Δp = 0 is set to zb, (2.12) becomes

Δp = (ρa −ρg)g(z− zb) (2.13)

and (2.10) becomes

rTθ
dθ
ds

= Tϕ cosθ − rwegsinθ −bg(z− zb)r, (2.14)

where bg represents the effective buoyant force per unit volume (the net upward
force) produced by the difference in the densities of the surrounding atmosphere
and the lifting gas. That is

bg = (ρa −ρg)g. (2.15)

In addition,
dr
ds

= −sinθ , (2.16)

dz
ds

= cosθ (2.17)

are found from geometrical considerations. At the same time, the geometric surface
area S and volume V for the object formed from the curved surface generated by
rotating curve C around the A axis may be determined by

dS
ds

= 2πr, (2.18)

dV
ds

= πr2 cosθ . (2.19)
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2.2.2.2 Formula Describing the Natural-Shape Balloon

In Upson’s concept as described in Sect. 2.2.1.4, there is excess film in the
ϕ-direction in the shape of the balloon in the process of becoming fully inflated.
In this condition, folds or wrinkles form parallel to the meridian, and there is no
tension in the ϕ-direction of the film across these folds or wrinkles. Consequently,
by setting Tϕ = 0 in (2.14) and (2.11), the following two equations that describe the
vertical cross-section of a natural-shape balloon can be obtained.

rTθ
dθ
ds

= −rwegsinθ −bg(z− zb)r, (2.20)

d(rTθ )
ds

= rwegcosθ . (2.21)

If it is assumed that there is an infinitesimal excess in the film in the ϕ-direction
even when the balloon is fully inflated, these equations can be used for all stages,
from the gas being injected into the balloon at launch through to full inflation.

We set −F1 to be the force in the z-direction acting at the base of the balloon P1
(downward force from the payload suspended from the bottom of the balloon), and
we set −F2 to be the force in the z-direction acting in the same way at the apex of
the balloon P2 (generally, F1,F2 ≥ 0).

Here, the dimensionless length λ is defined as

λ =
(

F1 +F2

bg

) 1
3
, (2.22)

and the following dimensionless parameters are defined.

r̃ =
r
λ

, z̃ =
z
λ

, z̃b =
zb

λ
, s̃ =

s
λ

, �̃s =
�s

λ
, R̃ =

R
λ

, (2.23)

T̃θ =
Tθ

bgλ 2 , (2.24)

S̃ =
S

λ 2 , Ṽ =
V
λ 3 . (2.25)

Equations (2.20) and (2.21) may be written as follows.

r̃T̃θ
dθ
ds̃

= −kΣer̃
dr̃
ds̃

− (z̃− z̃b)r̃, (2.26)

d(r̃T̃θ )
ds̃

= kΣer̃
dz̃
ds̃

, (2.27)

where
k = (2π)−

1
3 , (2.28)
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where Σe is the dimensionless film weight, and it is an important similarity parame-
ter defined by

Σe =
weg

kbgλ
(2.29)

that characterizes the shape of the balloon. That is, because Σe is the only shape
parameter in (2.26) and (2.27), shapes having the same value of Σe will result in
similarly shaped balloons. In addition, (2.16) to (2.19) can be written as follows.

dr̃
ds

= −sinθ ,
dz̃
ds̃

= cosθ , (2.30)

dS̃
ds̃

= 2π r̃,
dṼ
ds̃

= π r̃2 dz̃
ds̃

. (2.31)

2.2.2.3 Significance of the Natural-Shape Balloon

As will be described in the next section, the radius of curvature becomes infinite and
the surface becomes flat at the apex of the balloon. Consequently, in the partially
inflated state during ascent, there is no part of the film where there is a shortage
of length in the circumferential direction. Consequently, the balloon maintains a
reasonable shape from ascent until full inflation.

As noted above, the reason why it is possible to calculate the shape with the cir-
cumferential tensile force Tϕ = 0 as a constraint condition is because of the unique
properties of the film material (i.e., the membrane). That is, in general an extremely
thin and flexible membrane has no resistance to bending and no compressive forces
in axially symmetric balloon shapes, as specified as a formulation assumption. If the
length along the meridian line of the balloon envelope is constant and if it is assumed
that there is some film slightly in excess of the required amount in the circumfer-
ential direction, there will be wrinkles generated parallel to the meridian line, and
there will be no circumferential film tension perpendicular to these wrinkles. This is
an important precondition for realizing natural-shape balloons.

This model is theoretically realized by neglecting stretching of the film; it is a
statically determinate problem in structural mechanics, and it has the characteristic
that it can be treated by considering shape and film extension separately.

2.2.2.4 Natural-Shape Balloons having Zero or Negative-Pressure
Differential at the Base

The Case of Zero-Pressure Differential at the Base

The example below shows the case when F2 = 0. First, treating the total length of
the balloon �̃s as a constant, shapes with a pressure differential of 0 at the base of the
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Fig. 2.9 Changes in the cross-sectional shape of a natural-shape balloon. The changes in the angle
θ0 at the base of the balloon are shown as a function of the similarity parameter Σe

balloon (z̃b = 0) as determined by changing the similarity parameter Σe are shown
in Fig. 2.9. This is obtained by determining θ0 by repeated computation from the
initial conditions

r̃ = z̃ = S̃ = Ṽ = 0, r̃T̃θ =
1

2π cosθ0
(s̃ = 0), (2.32)

which when integrated becomes

r̃ = 0 (s̃ = �̃s) (2.33)

by assuming a θ0 value for the angle θ at the computational starting point s̃ = 0
based on the given parameter Σe.

At the apex of the balloon (i.e., at s̃ = �̃s) the radius of curvature is infinite, and the
balloon is flat. The condition z̃b = 0 (i.e., at the base of the balloon P1 the pressure
differential, Δpb = 0) can be easily satisfied by setting the bottoms of venting ducts
(which are installed in the lower part of the balloon (see shape c in Fig. 2.6) and
are open at the bottom to the atmosphere) at the same height as the base of the
balloon. This form of balloon is categorized as a zero-pressure balloon and it will
be described in detail in Sect. 2.3.1.

Here, smaller Σe values indicate the fully inflated condition of a balloon that
has a heavy payload compared with the film weight. The major difference in shape
caused by differences in Σe is the angle at the base of the balloon. This relationship
is depicted in Fig. 2.9. This relationship implies that shape varies with payload mass
even for balloons having the same volumes and made from the same film.
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The Case of Negative-Pressure Differential at the Base (Partial Inflation)

Next, we determine the shape during ascent. By taking the value of Δpb to be neg-
ative (i.e., letting z̃b be positive) this case can be determined in a similar way to
those cases previously shown by the shape a and b in Fig. 2.6. Since there are the
two parameters θ0 and z̃b in this calculation, the two convergence conditions in the
iterative calculation are given in (2.33) and the fact that the volume Ṽ is a prescribed
value determined from the total mass and altitude of the balloon.

Since there is excess balloon film in this case, it is necessary to note that we is not
a constant value, rather it depends on the distance from the base s. More specifically,
we first determine the circumferential length �ϕ for each section of the balloon in its
fully inflated shape.

�ϕ(s) = 2πr. (2.34)

Then we is also a function of s, and

�ϕ

2πr
we (2.35)

may be substituted for we in (2.20) and (2.21).

2.2.2.5 Natural-Shape Balloons with a Positive Pressure Differential
at the Base

When There is a Finite Pressure Differential at the Base

Next, we consider enclosed balloons without venting ducts where the pressure at the
base of the balloon is greater than the surrounding atmospheric pressure. In other
words, we consider the case when Δpb > 0 (zb < 0). The shape is determined by
the procedure described in Sect. 2.2.2.4, and as Δpb increases from 0, the balloon
becomes oblate in shape, and is referred to as a pumpkin balloon (see the shape d in
Fig. 2.6).

When the Pressure Differential at the Base is Infinite

At sufficiently high pressure differentials (i.e., when balloon internal pressure can be
regarded as being independent of height) the force due to the weight of the film may
be ignored, and the balloon reaches the limit shape shown by the shape e in Fig. 2.6.
This shape is obtained by replacing z̃ + z̃b by the constant value z̃b in (2.26) and
(2.27) and setting Σe = 0, and it is described by the following two equations.

T̃θ
dθ
ds̃

= z̃b, (2.36)
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d(r̃T̃θ )
ds̃

= 0. (2.37)

The shape determined analytically from these equations is also the shape that has
the maximum volume based on the constraint that the length of the meridian line is
constant.

Here, (2.37) implies that the total value of T̃θ in the cross section of fixed height
z̃ is constant, being independent of z̃. Consequently, if we consider the equatorial
region where r̃ is a maximum (r̃ = r̃max), because it is symmetrical about the equator,
the total value of tension for this section may simply be considered to be balanced
with the force acting on this cross section due to the pressure differential inside and
outside the balloon (here a constant value). In short,

2π r̃T̃θ = π r̃2
max(−z̃b), (2.38)

or expressed another way

r̃T̃θ = − z̃b

2
r̃2

max. (2.39)

Accordingly, substituting (2.39) into (2.36) gives

dθ
ds̃

= − 2r̃
r̃2

max
. (2.40)

This equation is called Euler’s elastica [8]. This shape can be used to approximate
the shape of super-pressure balloons. The radius of curvature along the meridian in
the equatorial section of this balloon is half the radius r̃max in the horizontal direction
in the same section of the balloon.

R̃ =
ds̃
dθ

=
r̃max

2
(r̃ = r̃max). (2.41)

2.2.2.6 Film Tensile Force and Singularity

The film tension T̃θ determined as above and the change with film position s̃/�̃s
of the total value 2π r̃T̃θ are shown in Fig. 2.10. This corresponds with the shapes
during inflation shown by the shape a to c in Fig. 2.6. The situation is depicted
in which the tension T̃θ abruptly increases near the top and bottom of the balloon.
In addition, one can see that the tension increases as the balloon approaches full
inflation.

Figure 2.11 shows the change in the tension distribution for the values of the
parameter Σe shown in Fig. 2.9. This shows that when Σe is small, the total ten-
sion around the circumference is almost constant at an arbitrary height z̃, but as Σe
increases, the ratio of the tension generated at the top of the balloon to that gener-
ated near the bottom increases due to the effect of the film’s own weight. The stress
per unit length at the apex and base becomes infinite in the same manner as for the
case of a pressurized balloon, which was described in the previous section.
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Fig. 2.10 Variation with altitude of the tension as a function of gore position. The right axis shows
the total tensile force at a given gore position

Fig. 2.11 Effect of Σe on the tension as a function of gore position. The right axis shows the total
tensile force at a given gore position

The balloon model presented above is strictly mathematical, and, as such, it is
not suitable for actual application in its current form. Because the circumferential
length is zero at the apex and the base of the balloon, the film tension Tθ in the
meridional direction becomes infinite, making it impossible to suspend a payload
from the balloon.

In gore designs of early balloons, the cylinder end section or the taper-tangent
end section was used for actual gore patterns (Fig. 2.12) to ensure that the
circumferential length did not become zero. In other words, they were constructed
so that folds or wrinkles were produced in the meridional direction at the top and
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Fig. 2.12 Gore shapes that reinforce by increasing the amount of top and bottom film

bottom. As an extreme example, if both ends of a cylinder having a length equal
to that of the balloon’s meridional lines are tied, the length in the circumferential
direction will be constant independent of the balloon height; hence, if the weight
of the film is neglected, the circumferential tension will be constant, and will be
independent of location. A load tape system was developed as a smarter design to
solve this problem. The behaviors of balloons that have load tapes are discussed in
the next section.

2.2.3 Expansion of Design Concepts for Balloons with Load Tape

2.2.3.1 Load Tape

With the exception of when light payloads of at most a few kilograms (such as
radiosondes) are suspended, transmitting the concentrated load of a payload as a
distributed load to the film is in a major problem in balloons that carry heavy devices
ranging from a few hundred kilograms to in excess of 1 ton.

The load tape systems employed in typical scientific balloons made of polyethy-
lene film involve the vertical insertion of reinforcing fibers along the sealing lines of
adjacent gores. The fibers are strong and have a sufficiently low extensibility com-
pared with that of the film. The payload is suspended from the point where all the
load tapes concentrate at the base. This is a smart configuration that transmits and
distributes the payload weight to the film (Fig. 1.4).

Such a system is highly compatible with the shapes of original natural-shape
balloons in which only the meridional length is regarded as a constraining condition
and where only meridional stress is present. It is well suited to manufacturing pro-
cesses that make balloons by joining gore boundaries by heat-sealing. In addition,
since the load tape bears all of the meridional tension, the advantage of this system
is that the film stresses at both the apex and bottom of the balloon do not become
infinite as in the description in Sect. 2.2.2.
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2.2.3.2 Design of Natural-Shape Balloons with Load Tape (3D Gore
Design Concept)

Returning to the starting point, we consider a method for extending the Upson’s
natural-shape balloon concept to balloons with load tapes. His basic concept in-
volves producing only uniaxial film tension assuming nostretching of the film.

Here we try to design a balloon in which a gore forms a bulge with a small cir-
cumferential local radius between adjacent load tapes. At the bulge, we first assume
that the meridional gore length is long enough that wrinkles are produced in the
film in the circumferential direction, or, equivalently, there is no meridional ten-
sion. It is further assumed that the gore width is the length of the curved bulge in
the circumferential direction. That is, by applying the same analogy as the original
natural-shape balloon model of Sect. 2.2.2, the meridional tension on the film is
Tθ = 0, and tension Tϕ is produced only in the circumferential direction.

Assuming such a configuration (Fig. 2.13b), the forces in the meridional direction
are supported by only N strands of load tape, and only uniaxial tension is generated
in the film, similar to the situation for original natural-shape balloons having no load
tape. However, the direction of the tension is 90◦ to that for the case when there is
no load tape (Fig. 2.13a), and it is in the circumferential direction. As a result, the
circumferential film tension transfers to the load tapes and pulls them outward. The
load tape curvature is defined by this pull up force and load tape tension.

If considered this way, since only uniaxial tension is present in the film, the stat-
ically determinate problem is applicable even to balloons that have load tape [9].
The circumferential tension in the film depends on the local radius of curvature Rϕ
at the location, and it is expressed simply as

Δp
Δp

Tθ≠0
Tθ=0Tφ=0

Tφ≠0

Longitudinal wrinkles due to 
film surplus

Balloon without load tapea b

Lateral wrinkles due to 
film surplus

Load tape Gore bulge

Balloon with load tape

Film surplus in the lateral 
direction, film tension in the 
longitudinal direction only

Film surplus in the longitudinal 
direction, film tension in the lateral 
direction only

Fig. 2.13 Relationship between reinforcement and film tension resulting from load tape (partial
diagrammatic view of upper quarter section): a Balloon without load tape (Film surplus in the
lateral direction, film tension in the longitudinal direction only); b Balloon with load tape (Film
surplus in the longitudinal direction, film tension in the lateral direction only)
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Tϕ = ΔpRϕ , (2.42)

where Δp is the difference between the internal and external pressures.
The radius of curvature Rϕ may be selected independently of balloon size, and

its minimum value is about half the length of the widest part of the spacing between
adjacent load tapes. In other words, the radius of curvature Rϕ governed by the
number of load tapes N and the equatorial radius (i.e., the maximum circumferential
radius) rmax of a balloon without load tape is given by the following equation,

Rϕ

rmax
≥ π

N
. (2.43)

Thus, the radius of curvature Rϕ may also be reduced to a few tenths of rmax.
In addition, as will be discussed later, the load tape spacing is determined by the

width dimension of the film material, which is packaged in a rolled condition at
the time of manufacture. Therefore, to manufacture larger balloons, the number of
load tape strands is just increased, while the spacing remains the same. According
to (2.42), the film tension Tϕ is independent of the balloon’s size. This remarkable
property is very different from that of conventional balloons, and is the key to being
able to dramatically increase the pressure resistance of large balloons.

At the same time, the sum total of the tension T� applied to the load tape is also
independent of balloon height. It is the product of the cross-sectional area at the
balloon equator and the pressure differential Δp and is given by

NT� = πr2
maxΔp. (2.44)

From a different viewpoint, this tension is produced by the circumferential tension
in the film pulling the load tape outward, and the tension generated in the film due
to the pressure differential Δp is transferred as the load tape tension.

The 3D gore design concept is considered able to combine the functions of load
tape and film to optimize the specific characteristics of both. A balloon structure
based on this 3D gore concept is ideal for a natural-shape balloon having load
tape, and it is an appropriate extension of the original natural-shape model to the
case when load tape is inserted. As mentioned at the beginning of this section, to
realize such a balloon it is necessary to construct a 3D shape so that each gore forms
a bulge having a specific small local curvature [10].

2.2.3.3 Relationship to the Shape of Natural-Shape Balloons
without Load Tape

The shapes of a balloon obtained by the 3D gore design concept and a balloon
without load tape (which is considered in detail in Sect. 2.2.2) essentially share the
following points.
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Fig. 2.14 3D gore cross-
sectional shape and the direc-
tion of tension transferred to
the reinforcing tape from the
film Tf
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Load tape

1. Inserting high-tensile-strength, low-extensibility load tapes along the meridian is
consistent with the assumed conditions for a natural-shape balloon in which the
meridional length is regarded as constant.

2. The meridional tension and the perpendicular force of the load tape, which deter-
mines its curvature, are both approximately proportional to those on the surface
element of a balloon model without load tapes as described in Sect. 2.2.2. Then
the load tape curvature is almost the same as the shape of the original natural-
shape balloon.

Point (2) can be explained as follows. A segment of an infinitesimally wide strip
is assumed to lie across the bulge between adjacent load tapes. The projected cross
section of the strip is the product of the width and the load tape spacing. The force
that pulls the load tape outward is equal to the product of this projected cross sec-
tion of the small strip and the pressure exerted on the film. The meridional tension
imparted to the load tape is equal to the product of the load tape spacing and the
meridional film tension exerted on the surface element of a balloon model without
load tapes, as shown in Fig. 2.7.

The slight difference between the two shapes is as follows. As shown in Fig. 2.14,
a section orthogonal to the central line above the overhanging gore, and Cartesian
coordinates t, n, and b are applied to the point P where this section intersects the load
tape. t and n are normal to the tangent to the load tape. Because the gore section is
not orthogonal to the load tape, the gore section tension Tf has not only a component
in the n direction, but also a component in the t direction, and this deviates from the
original natural shape without load tape.

This deviation is caused by the fact that the balloon is partitioned by a finite
number (N) of strands of load tape. In large balloons where N is 100 or more, this
difference can be neglected, but in small balloons this difference in shape has to be
considered during design. The formulation is a little complicated, and we refer the
reader to literature [10].

2.2.3.4 Implications of Reinforcement with Load Tape

Figure 2.15 shows a highly pressurized balloon reinforced by N strands of load tape
by means of the 3D design concept. In unfurling the load tape at the apex and the
bottom, it becomes arrayed like a cylindrical birdcage as shown in the figure. At
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Fig. 2.15 Case of a finite
number of load tape strands
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Film tension
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this point, if the number of load tape strands is increased by a factor of n, the local
radius of bulge curvature in the circumferential direction becomes 1/n due to film
overhang, and hence, the tension decreases by 1/n in the same way. At this point,
the quantity of load tape material is assumed to be the same, and one strand of tape
is split vertically into n strands. In so doing, the tension and strength per strand of
load tape both become 1/n, and the load is uniform.

Furthermore, by repeating the same process, if n is increased to infinity, the film
circumferential tension will tend to zero, and the load on the infinite strands of load
tape will remain constant. If this balloon is unfurled, the infinite strands of load tape
form an array in a cylindrical shape as shown in Fig. 2.16. That is, the infinite strands
of load tape mutate into the film-like strong envelope material of the balloon, and
the infinitely thin film functions as a gas barrier.

Consider the difference between two balloons: a balloon constructed by the cylin-
der as the limits of the above-mentioned 3D gore design concept and a balloon con-
structed by tying the top and bottom of a cylinder made only of film (Fig. 2.17). In
the balloon made out of only film, since the amount of film in the circumferential
direction is constant at every location, the film tension is also constant. The point of
distinction is whether the material that makes up the envelope is film or high-tension
fibers.

For a pressure vessel, the weight of the envelope generally decreases in inverse
proportion to the specific strength of the envelope material, if the maximum pressure
is kept the same. The specific strengths of the balloon film materials with good biax-
ial homogeneous characteristics are in the range of 3×103 to 6×103 m. By contrast,
since a polymer fiber consists of long molecules aligned parallel to the fiber’s axis, a
high uniaxial specific strength can be obtained. Table 2.1 gives the specific strengths
of representative high-strength polymer fibers, and they vary by about a factor of a
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Fig. 2.16 Case when number
of load tape strands tends to
infinity
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Film tension
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Fig. 2.17 Balloon made as
a cylinder consisting just of
film

Tj=0
Tq

Cylindrical-shaped film

Film tension

:Fixed    
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Table 2.1 Specific strengths of representative high-strength fibers and balloon-use film

Material name PBO Aramid High-strength Polyethylene film
polyethylene for balloon use

Specific strength (×103) 380 200 350 3–6

100 compared with polyethylene film for balloon use. An envelope constructed from
these polymer fibers, under the constraint that the balloon weight remains constant,
will have greater strength than a balloon made with polyethylene film according to
the ratio of specific strengths.

The strength of a balloon reinforced with a finite number of strands of load tape
is intermediate between the strengths of these two typical balloons (i.e., the film
envelope and polymer fiber envelope). The 3D gore design concept offers the most
effective reinforcement for balloons with load tapes.
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More specifically, if we take Req to be the equatorial radius of curvature of the
balloon constructed as a cylinder shown in Fig. 2.17, the film meridional tension Tθ
when the pressure differential Δp is applied is given by

Tθ =
ΔpReq

2
. (2.45)

At the same time, for the balloon shown in Fig. 2.15, if the bulge is assumed to be
semicircular, the maximum-value local radius on the equator Rϕ,max is given by

Rϕ,max = Req sin
π
N

, (2.46)

And the film circumferential tension Tϕ is

Tϕ = ΔpRϕ,max. (2.47)

The ratio of the two tensions K = Tθ /Tϕ ≈N/2π is the ideal reinforcement improve-
ment rate from load tape. For example, if N = 100, then K = 16, and for N = 200,
K = 32.

2.2.3.5 How to Construct a Balloon that has No Film Tension
in the Meridional Direction

We consider how to make a gore having a 3D bulge from a planar film without elon-
gating the film, so that, as in the description given in Sect. 2.2.3.2, the meridional
tension Tθ = 0 and the gore has a constant circumferential radius of curvature Rϕ .
As shown in Fig. 2.18, the width and length of the gore are made larger than that of
conventional gore. At this point, the gore width of each part has a length that enables
it to form a bulge of a specified radius of curvature Rϕ between the adjacent load
tapes. Here, if we make a planar gore, so that the centerline length of the gore is
equal to that of the bulge, the length of the gore edges becomes longer than the load
tape. Consequently, when manufacturing a balloon, the gore edges are joined to the
relatively short load tape by gathering the edges. The excess film is then left in the
meridional direction of the gore as circumferential wrinkles. At this juncture, by ap-
propriately controlling the shortening proportion, a bulge that swells in a specified
3D shape can be formed from a planar-shaped gore. This process is similar to the 3D
cutting procedures used for tailoring and dressmaking [11]. A model balloon with
a volume of 3,000 m3 was manufactured and tested to verify the 3D gore design
concept.

The photograph in Frontispiece 5 shows an indoor full inflation test of the
balloon.
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Fig. 2.18 Balloon-manufacturing method for the 3D gore design concept. A gore with a bulge is
produced by attaching a gore that is larger than a conventional gore to the load tape by shorten-
ing (indicated by the thick arrows). This process is similar to the 3D cutting procedures used for
tailoring and dressmaking

2.2.3.6 Problems with Conventional Balloons with Load Tape

In the design concept for a conventional balloon having load tape, N strands of load
tape are attached at equal intervals to the surface of the natural-shape model having
no load tape, as described in Sect. 2.2.2.2. The centerline length of the balloon gore
is the meridian of the balloon, and the gore width is 1/N of the circumferential
length. At the balloon manufacturing stage, the gores are joined to each other along
their edges with load tapes.

In this manufacturing method, the length of the centerline of the gore is clearly
shorter than the length of the junction line (i.e., the gore edge line). In the state
where there is no pressure exerted and no extension in the film, the cross-sectional
shape of the balloon becomes a polygon, as shown by line c in Fig. 2.19, and the
load tapes are located at the vertices. In this state, the load tape subjected to the
payload weight cannot be outwardly raised by film tension, and this configuration
does not produce a balloon. Consequently, in an actual balloon, the gore must swell
slightly outside the load tape due to its elasticity, as shown in Fig. 2.19b.

In this case, the gore must stretch not only in the circumferential direction, but
also in the meridional direction. As biaxial elongation is required, the actual gore
bulge due to the film’s elasticity is further constrained. As a result, the circumferen-
tial radius of curvature near the centerline of the gore is not much smaller than the
envelope radius, because the meridional stretching is required there and the tension
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Fig. 2.19 Traverse cross-sectional diagram of a balloon envelope. Line c shows the normal gore
cross-section. During full inflation, the shape bulges in the manner indicated by line b due to
stretching of the film, and the radius of curvature near the gore centerline becomes about the same
as the radius of circumferential curvature r of the balloon. Line a shows the swelled out position
resulting from the 3D gore design concept, and the film in this case is not stretched

is generated in the meridional direction as well. This fact means that all the merid-
ional forces are supported by both this film tension and the load tape tension. This
phenomenon is not consistent with the design concept that the entire meridional
force of the envelope should be supported by the load tape assembly having a high
uniaxial tensile strength.

In addition, to utilize film extension for the realization of a balloon is different in
principle from the Upson’s natural-shape balloon model introduced in Sect. 2.2.2,
and it is no longer a statically determinate problem. Accurate analysis of the biaxial
film tension produced in this way is not straightforward, and finite element methods
require numerical computation that extends to the case of flexible film materials
having nonlinear properties. However, as an approximate estimate, the film tension
at the burst point by pressurization is roughly the same as the tension on a sphere
of the same volume. That is, with the 3D gore design concept, the film tension is
proportional to the local radius of the bulge. In contrast with conventional balloons,
the film tension is approximately proportional to the equatorial radius of the balloon.
The observed burst pressures in flight-testing also support the same result.

With zero-pressure balloons (Sect. 2.3), the pressure differential applied is very
small. In addition, the film deformations of a flat balloon gore are very small and
are achievable due to the good elongation properties of polyethylene films used
for balloons. As a result, while such a critical problem has not become evident in
zero-pressure balloons, it is a major obstacle for realizing super-pressure balloons,
in which the pressure differentials are particularly high.

A flight test of the 3,000-m3-volume balloon shown in Frontispiece 5 was
performed, and Fig. 2.20 shows photographs by an industrial television (ITV)
camera installed in the payload looking up from underneath the balloon with a
specified pressure differential after reaching the maximum altitude. In the en-
larged photograph of Fig. 2.20b, the circular arc can be seen to bulge between the
reinforcing tapes in accordance with the design idea of the 3D gore design con-
cept [12]. Figure 2.21 shows a conventional shape for reference, but the differences
are distinct in that the outer circumference is approximately circular, and there is no
bulge between the load tape.
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Fig. 2.20 Super-pressure balloon in flight. The bulges between the load tapes resulting from the 3D
gore design concept are readily apparent: a Photograph of entire balloon; b Enlarged photograph

Table Talk 2: Another Natural-Shape Balloon Formulation

Dr. Jun Nishimura (former ISAS Director), who made profound contributions to
scientific ballooning in Japan, worked independently on the formulation of a natural-
shape balloon using variational methods. The variational method, based on cer-
tain constraining conditions, involves solving for extreme values of given functions
(maximum or minimum value), and it is described in detail in physics textbooks.
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Fig. 2.21 Photograph looking up at a conventional balloon during ascent. Bulging ventilating duct
just before exhaust is readily apparent

Dr. Nishimura assumed the two constraining conditions of constant meridional
length and constant volume and determined the balloon shape as a function of the
minimum potential energy of the buoyant force (the buoyant force point of action
goes to the highest position). Although his approach differs from that of Upson, the
results obtained were in agreement with the formula for a natural-shape balloon de-
rived by Upson described in Sect. 2.2.2. Mathematically, it is the so-called “elegant
solution” (i.e., the one having the simplest derivation).

Incidentally, why did the results of Upson, who determined the shape from the
equilibrium of the forces acting on a surface element on the envelope, agree with
the results of the variational method, which appears to be a completely different ap-
proach? There is a hint in the variational method constraint condition of keeping the
meridional length constant. Here, the circumferential length has not been included
as a constraint. That means the length is unrestricted. In other words, by considering
the fact that there is excess film in the circumferential direction in the balloon in a
partially inflated state, the condition that the meridional film tension is zero as con-
ceived by Upson is incorporated as an initial assumption in the variational method.

Combining these two solutions, makes it easier to understand the fundamen-
tal properties of natural-shape balloons. More specifically, the balloon shape that
generates tension in the film only in the meridional direction is also the shape in
which the buoyant force produces the smallest potential energy.

2.3 Balloon Systems

In this section, we give an overview of the construction and functions of some rep-
resentative balloon systems. Detailed in-flight characteristics for these systems are
described in Sect. 2.4.
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2.3.1 Zero-Pressure Balloons

Since zero-pressure balloons minimize the pressure on the balloon film, they opened
the way to realizing large balloons constructed from thin, lightweight films. The
half-century or so of modern scientific ballooning can be called the era of the giant
zero-pressure balloon.

2.3.1.1 Construction

As mentioned in Sect. 2.2, zero-pressure balloons have a venting duct at the base
of the balloon. After the balloon attains full inflation, if the lifting gas expands
further it will overflow to the outside via the vent hole. Zero-pressure balloons are
so termed because the internal–external pressure differential of the balloon is zero
at the balloon base. Because the inside of the balloon is connected to the outside air
through the venting duct, this type of balloon is also referred to as a balloon open to
the air.

In reality, the venting hole is located a little higher up than the balloon base, and a
duct is suspended from this hole to the base. In this configuration, the position of the
venting hole is equivalent to the base. Since the ducts are constructed from the same
flexible thin film as the balloon film, when the pressure in the base of the balloon
exceeds that of the outside atmosphere, the duct is pushed open from the inside and
forms a cylindrical shape, allowing the vent gas to flow smoothly through it. The
photograph in Fig. 2.21 shows a venting duct in its inflated, venting state.

When the pressure differential is negative, the ducts are depressed down, thus
preventing air flowing into the balloon. Consequently, the venting duct also func-
tions as a check valve for one-way flow.

Ordinarily, the venting duct installed in the envelope hangs down naturally. How-
ever, if the balloon descends rapidly, there is a possibility that the bottom edge of the
duct will float upward because of the air stream flowing on the side of the envelope.
If this happens, the equivalent position of the vent hole will have been moved to a
higher location; the lifting gas will be vented until the pressure differential at that
position becomes zero. This reduces the buoyant force, and the balloon’s descent
may not terminate. Therefore, in cases when the flight plan includes a rapid descent,
the venting duct is attached along the side of the envelope, as shown in Fig. 2.22.

2.3.1.2 Sustainability of Constant Altitude

After achieving its fully inflated condition, a balloon continues to ascend, main-
taining the same volume while venting the lifting gas. Soon afterwards, the ascent
stops at the altitude at which the buoyant force equals the weight of the total balloon
system, and the balloon enters its level flight condition. In actual fact, the balloon
continues to ascend even after the free lift becomes zero due its momentum. If the
temperature difference between the lifting gas and atmosphere is neglected, there
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Fig. 2.22 Venting duct con-
figurations

Venting duct attached along 
the side of the envelope

Conventional venting duct

will be insufficient buoyant force due to excessive venting. After the balloon attains
its maximum altitude, it will reverse direction and commence descending, and it
will be unable to stop this descent.

As the details will be described in Sect. 2.4, however, essentially the tempera-
ture of the lifting gas during ascent is lower than that of the atmosphere because of
the effect of adiabatic expansion. If ascent does stop, the gas temperature will in-
crease to atmospheric temperature. This will compensate the reduction in the lifting
force due to excessive venting, enabling the balloon to achieve a level flight.

On the one hand, under level flight conditions, if the buoyancy increases for some
reason and the balloon starts to ascend again, lifting gas flowing from the venting
duct will reduce the buoyancy, and the balloon will maintain a constant altitude.
On the other hand, if the buoyancy decreases, the balloon will start to descend. If
this occurs, its buoyancy will not recover since the increase in atmospheric pressure
will reduce the volume of the balloon, and consequently the balloon will continue
to descend.

In other words, if the temperature difference between the atmosphere and the lift-
ing gas is ignored, zero-pressure balloons will have an automatic stabilization point
when they ascend, but they will not have a stabilization point when they descend.

2.3.1.3 Altitude Compensation at Sunset

An important characteristic of zero-pressure balloons is the so-called sunset effect.
As these balloons have a stable altitude only as they ascend, when the sun sets and
they cease to absorb radiation from the sun, the temperature of the buoyant gas
falls, buoyancy decreases, and the balloon can no longer maintain its altitude. If
the internal balloon gas temperature decreases from Tg [K] by an amount ΔTg [K]
with the setting of the sun, the rate of buoyancy reduction due to contraction of the
buoyant gas will be ΔTg/Tg.

The gas temperature of conventional polyethylene balloons flying over the earth’s
middle latitudes drops 15–25 K after the sun sets. Assuming the daytime gas tem-
perature to be about 230 K, the reduction in buoyancy is about 7–10% of the total
buoyant force. The weight of the payload must be reduced to compensate for this
reduction in the buoyant force; this is done by dropping ballast with the aim of main-
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Fig. 2.23 Compensating for sunset and the number of flight days possible

taining the nighttime altitude. The gas temperature increases when the sun rises, and
because the buoyancy recovers by an amount equivalent to the weight of the ballast
dropped at sunset the previous day, the balloon starts to ascend again, and lifting
gas is vented. At the next sunset, ballast is again dropped, and the cycle repeats.
Since the total system mass mt decreases with the dropping of ballast, the amount of
ballast that needs to be dropped each day also decreases in proportion with the total
system mass.

Let KB represent the proportion of the quantity of ballast to drop each day to
compensate for sunset relative to the total balloon system mass mt. The total ballast
consumption mB for a flight of n days is then given by

mB = mtKB ∑(1−KB)n−1. (2.48)

Figure 2.23 shows an example of how the total ballast consumption increases with
the number of flight days, when KB remains constant at 10% during an n-day flight.
This example is for the case of a balloon with a volume of 100,000 m3 flying in the
stratosphere at an altitude of 31.2 km (atmospheric pressure: 10 hPa).

Assuming a standard atmosphere, the effective buoyancy force during level flight
is approximately 12,850 N (refer to Appendix 1, “Standard Atmosphere Table”).
The mass of the balloon for this volume is in the vicinity of 230 kg, and the in-
clusion of a parachute and other common equipment increases this figure to about
500 kg. Thus, the payload mass is about 810 kg, and it accounts for 62% of the initial
effective buoyancy. Even if the entire payload were ballast, the number of flight days
could not exceed 9 days according to Fig. 2.23.

2.3.1.4 Pressure Exerted on the Film

We denote the atmospheric pressure at the flight altitude as pa and the density differ-
ence between the air and the lifting gas as Δρ . If the temperature difference between
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the lifting gas and air is ignored, the interior–exterior pressure differential Δp at a
height z from the base of the balloon can be expressed as

Δp = Δρgz = Δρ0gz
pa

pa0
, (2.49)

where Δρ0 and pa0 are the differential gas density and the atmospheric pressure
on the ground, respectively, and g is the acceleration due to gravity. Since Δρ0 is
approximately 1.0kg/m3, pa0 is 105 Pa, and the balloon height is approximately
100 m. Thus, even for fully inflated large balloons, the interior–exterior pressure
differential at the zenith is very small, being about only 1% of the atmospheric
pressure pa at the float altitude.

2.3.2 Super-Pressure Balloons

As this type of balloon does not require ballast to be jettisoned to maintain its flight
altitude, long duration flights are unaffected by the sunset effect. Consequently,
since the beginning of modern ballooning in the 1950s, many development projects
have been carried out, and attempts at practical applications have been made. Al-
though a high pressure resistance is required, the major aim of many trials was to
develop strong lightweight balloon films to satisfy this requirement.

However, it is extremely difficult to practically produce a film that is able to
withstand pressure differentials that are several factors of ten greater than those of
zero-pressure balloons with only a few-fold increase in the weight of the film. The
development of a super-pressure balloon has remained a subject of active research
in balloon engineering for the past half-century or so. A fundamental solution to this
problem is the “3D gore design concept,” which is described in Sect. 2.2. Specifi-
cally, it is a shape design approach that attempts to find ways to reduce the tension
produced in the film.

2.3.2.1 Construction

Unlike zero-pressure balloons described in Sect. 2.3.1, super-pressure balloons do
not have a venting duct. That is, super-pressure balloons are closed to the outside at-
mosphere. The two exceptions to this are safety valves that operate automatically to
release unexpected high pressures and/or exhaust valves that are opened and closed
by remote operation from a ground base to control the buoyancy.

In principle, because the free-lift portion of the buoyant gas is not vented from
the balloon, in order to stop the ascent of the balloon, the expansion of the free-
lift portion of the gas must be constrained by the balloon film, and the pressure
differential with the outside air will increase by this amount. Even when the diurnal
change in the lifting gas temperature is considered, the pressure differential is about
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20% of the atmospheric pressure at flight altitudes. Although the absolute value
of this pressure differential may not appear to be very high in the low-pressure
stratosphere, it is about 20 times higher than the pressure differential at the apex of
a zero-pressure balloon, and for large-volume stratospheric balloons made from thin
film, it is not a simple matter to withstand such pressures.

2.3.2.2 Sustainability of Constant Altitude

The free lift f̃ mtg is imparted to a balloon system having a total mass mt, and the
balloon expands while ascending. Here, f̃ represents the free lift ratio, which is
defined as (free lift)/(total weight of balloon system) (see Sect. 2.4.2.2 for a more
detailed explanation). As shown in Fig. 2.24, at an altitude of z1 (balloon volume:
Vb1, atmospheric pressure: pa1, atmospheric density: ρa1) the pressure differential
at the balloon base is zero (this is the zero-pressure balloon condition, State 1). The
balloon’s shape at this time corresponds to that shown by the shape c in Fig. 2.6, as
described in Sect. 2.2. At this point, if the pressure gradient between the base and
the apex of the balloon is ignored, the balloon’s internal pressure pb1 will be the
same as pa1. After this, the pressure at the base increases as it gains altitude, and
the shape of the balloon changes to the pumpkin shape depicted by the shape d to e
in Fig. 2.6. Then, at an altitude of z2 (balloon volume: Vb2, atmospheric pressure:
pa2, atmospheric density: ρa2, State 2) it attains its maximum altitude, and stops
ascending.

Level flight 

Altitude z3

State 3

   Atmospheric pressure : pa3

 Density : ra3

 Temperature : Ta3

Venting finishes 

Ascent 
Zero-pressure balloon 

Venting starts 

Level flight

Altitude z2

State 2   
 Atmospheric pressure: pa2

 Density : ra2

 Temperature : Ta2

Ascent

Super-pressure balloon

Altitude z1

State 1 (base pressure change zero)
Atmospheric pressure : pa1

Density : ra1

Temperature : Ta1

Fig. 2.24 Diagram showing balloon states
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Subsequently, in the vicinity of this altitude, the volume of the balloon may
be considered to be approximately constant. If the balloon climbs to an altitude
higher than z2, the air density decreases, and the buoyancy diminishes. Conversely,
if its altitude decreases, its buoyancy will increase. In other words, in contrast to a
zero-pressure balloon, a super-pressure balloon is stable in both the ascending and
descending directions. Since it is not necessary to drop ballast to maintain altitude,
long-duration flights become possible.

2.3.2.3 Pressure Exerted on the Film

The relationships between buoyancy, total balloon system mass, and balloon internal
pressure in States 1 and 2 are given by

(1+ f̃ )mt
Tg1

Ta1
= Vb1ρa1, (2.50)

mt = Vb2ρa2, (2.51)

pb1Vb1

Tg1
=

pb2Vb2

Tg2
, (2.52)

where Ta1, Ta2, Tg1, and Tg2 are the atmospheric temperatures and lifting gas tem-
peratures for States 1 and 2, respectively. In these two states, if the gas temperature
and atmospheric temperature are equal, the balloon’s internal pressure pb2,0 and its
pressure difference with atmospheric pressure Δpb2,0 at level flight are both simply
determined by the atmospheric pressure pa2 and the free lift ratio f̃ as expressed by
the following equations.

pb2,0 = pa2(1+ f̃ ), (2.53)

Δpb2,0 = pa2 f̃ . (2.54)

When there is a difference between the buoyant gas temperature and the atmospheric
temperature, the internal pressure pb2 and the internal–external pressure difference
Δpb2 are given by

pb2 = pa2(1+ f̃ )
Tg2

Ta1
, (2.55)

Δpb2 = pa2
Tg2 f̃ +(Tg2 −Ta1)

Ta1
, (2.56)

Here, since the altitudes for States 1 and 2 are close, the respective atmospheric
temperatures Ta1 and Ta2 can be treated as being equal. More specifically, the term
(Tg2 − Ta1) in the above equation is approximately equal to the temperature dif-
ference between the gas and the atmosphere for State 2, (i.e., ΔTg = Tg2 − Ta2).
At night, the gas temperature Tg2 falls more than the atmospheric temperature Ta2.
When Δpb2 < 0, the pressurization conditions as a super-pressure balloon are lost,
and the balloon becomes a zero-pressure balloon and loses its altitude stability in the
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downward direction. This boundary temperature ΔTg,lim is derived by substituting
Δpb2 = 0 into (2.56) as follows.

ΔTg,lim = −Ta2
f̃

1+ f̃
. (2.57)

Since the atmospheric temperature in the stratosphere is about 230 K, when f̃ is 8%,
ΔTg,lim will be −17 K.

The gas temperature Tg2 rises due to irradiation by the sun’s rays. The phe-
nomenon in which Δpb2 becomes greater than Δpb2,0 is called superheating, and
it governs the balloon’s design strength.

2.3.3 Special-Purpose Balloons

2.3.3.1 Dual-Balloon Systems

Super-pressure balloons described in Sect. 2.3.2 attempted to maintain a constant
flight altitude by keeping a large balloon in a pressurized condition. Figure 2.25b
and c depict dual-balloon systems, which are compound systems that combine a
small super-pressure balloon and a large zero-pressure balloon, in which the vol-
ume of the zero-pressure balloon is Kv times greater than that of the super-pressure
balloon. The small super-pressure balloon is used for controlling the altitude, while
the large zero-pressure balloon is used for lifting the payload.

Systems that have been proposed include a tandem balloon, in which the bal-
loons are situated above and below the payload (Fig. 2.25b), and a double-envelope

Super-pressure balloon

Zero-pressure 
balloon

Super-pressure balloon

a Simple super-pressure 
     balloon

b Tandem balloon c Double-envelope balloon

Fig. 2.25 Dual-balloon systems: a Simple super-pressure balloon; b Tandem balloon; c Double-
envelope balloon
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balloon (Fig. 2.25c). The former of these balloon designs has been tried by NASA,
and it was named the Sky Anchor system [13].

In this balloon system, the reduction in the buoyancy of the zero-pressure balloon
caused by the sunset effect is compensated by the increasing buoyancy of the super-
pressure balloon as the flight altitude decreases. In other words, it differs from a
simple super-pressure balloon in that it requires an altitude offset to maintain a stable
flight altitude.

The pressure differential Δp of the super-pressure balloon increases to compen-
sate for the change in the buoyancy of the large-volume, zero-pressure balloon. As
shown in (2.58), the pressure differential Δp is a factor of Kv larger than that of a
simple super-pressure balloon described by (2.54).

Δp = Kv pa f̃ . (2.58)

In addition, the altitude offset Δz is given by

Δz = H0 ln
pmin

pmax
, (2.59)

where pmax and pmin are the atmospheric pressures at the upper and lower altitude,
respectively, and H0 is the atmospheric scale height (Sect. 3.6.1). Figure 2.26 shows
the relationship between the balloon volume ratio Kv and the altitude offset Δz for
three different values of the buoyancy variation associated with the changes in gas
temperature caused by the presence or absence of irradiation by sunlight.

The buoyant forces should be appropriately distributed between the two balloons,
so that the zero-pressure balloon attains a state of zero pressure differential at the
ceiling altitude. If we denote the buoyant forces of the zero-pressure balloon and the
super-pressure balloon to be Fz and Fs, respectively, we obtain

Fz = mtg−Fs, (2.60)
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Fs = Kvmtg f̃ . (2.61)

In this balloon system, the system weight of the super-pressure balloon can exceed
its buoyant force, since the super-pressure balloon must be weighed down by the
zero-pressure balloon to a certain degree to control the flight altitude in the man-
ner described above. Thus, it is possible to avoid the strict constraint that the large
simple super-pressure balloon must be made from a sufficiently lightweight film to
enable it to reach the stratosphere while carrying a heavy payload. This permits a
heavy film to be used for the envelope material, extending the range of films that
can be used. Consequently, an improvement in the super-pressure balloon’s manu-
facturability and reliability can be anticipated.

An additional advantage of this dual-balloon system is improved flight safety.
Even if the super-pressure balloon bursts, the balloon system will not fall immedi-
ately because of the buoyancy of the zero-pressure balloon.

2.3.3.2 MIR Balloon

This is a balloon in which the optical properties of the balloon film have been de-
signed in such a way that the buoyancy fluctuation associated with the presence or
absence of solar radiation is minimized. Its development has been pursued since the
1970s by CNES, and it is referred to as a MIR balloon (Montgolfière Infrarouge,
French for “infrared Montgolfier”). By enhancing the reflectivity of the upper half
of the balloon, the increase in the buoyant gas temperature due to solar radiation
is reduced, and by enhancing the infrared absorption of the lower half, the infrared
energy radiated from the earth is absorbed reducing the drop in the gas temperature
during the night. Although this balloon can transport only a light payload, and its di-
urnal altitude fluctuation can be as large as about 10 km, it has been able to perform
long duration flights [14].

2.4 Motion of Balloons

In this section, we describe a flight model to illustrate the motion of balloons. To de-
termine the motion of a balloon and its behavior during flight, it is necessary to
model the temperature changes of the lifting gas inside the balloon, in addition to
determining the forces acting on the balloon. To simplify the treatment, the balloon
is treated as a point mass when considering the forces acting on the balloon. Pres-
sure gradients within the balloon are ignored, and deformation or rotation of the
balloon is not considered. However, when the effects of drag and pressure on the
balloon are introduced to improve the accuracy of the model, it will be necessary
to consider pressure gradients within the balloon and to take the balloon shape into
account.
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Fig. 2.27 Forces acting on a balloon and heat transfer into and out of a balloon

As shown in Fig. 2.27, the principal forces acting on the balloon are buoyancy,
gravity, and the forces associated with the motion of the balloon and the relative mo-
tion of the atmosphere (subsequently, forces associated with the planet’s atmosphere
will be referred to as aerodynamic forces).

In addition, when taking the balloon shape into account, while there are inter-
nal and external pressure differences and tensions created within the envelope that
vary with location on the balloon’s surface, the impact of these fluctuations on the
balloon’s motion is small, and hence, they are not considered.

The following factors cause temperature changes in the balloon envelope and the
lifting gas:

Adiabatic expansion and compression associated with
1. The aerodynamic force vector F acting on the balloon is expressed in terms of the

relative wind velocity ambient atmospheric pressure changes due to the upward
and downward motion of the balloon.

2. Convective heat transfer between the atmosphere and the envelope and between
the lifting gas and the envelope.

3. Radiative heat transfer between the lifting gas and the sun, planet (earth), and
space.

4. Radiative heat transfer between the envelope and the sun, planet (earth), and
space.
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The horizontal component of the balloon’s speed and its speed relative to that of
atmospheric winds are considered to be small.

First, in Sect. 2.4.1, we introduce a model that describes the balloon motion.
Then, in Sect. 2.4.2, we give general expressions for the vertical motion of a bal-
loon. We consider horizontal motion in Sect. 2.4.3, and the heat energy balance that
critically affects the balloon motion in Sect. 2.4.4.

2.4.1 Balloon Flight Model

Consider the coordinate system depicted in Fig. 2.28, in which the z-axis is ver-
tical and the x- and y-axes are orthogonal to the z-axis. Unit vectors parallel to
the x-, y-, and z-axes are represented by i, j, and k, respectively. In addition, the
balloon’s position is denoted by (xb,yb,zb), its velocity vector is represented by vb
with components (vbx,vby,vbz), and the wind velocity vector by vw with components
(vwx,vwy,vwz).

F has two components, namely, the drag force FD that acts parallel to the rela-
tive wind vector, and the side force FY that acts perpendicular to the relative wind
direction. More specifically,

FD =
1
2

ρa |νw −νb|2 CDAb, (2.62)

FY =
1
2

ρa |νw −νb|2 CYAb, (2.63)
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where Ab is the standard area when calculating aerodynamic forces; this value is
equal to the maximum cross-sectional area perpendicular to the balloon’s axis and
may be obtained by calculating the shape of the balloon. In addition, ρa is the atmo-
spheric density.

The angle between the balloon’s relative velocity vector vb −vw and k is defined
as the balloon’s angle of attack α . CD denotes the effective drag coefficient and CY
is the effective side force coefficient, and these depend on the angle of attack α , the
balloon shape, and the Reynolds number Reb defined by the following equation

Reb =
ρaDb |vw −vb|

μa
, (2.64)

where Db is the balloon’s diameter, and μa is the coefficient of viscosity for air.
The Reynolds number of the balloon Reb is about 106–107 on the ground and about
104–106 at flying altitudes, depending on the magnitude of the buoyant force. Since
a balloon is a membrane structure, it deforms slightly when it is acted on by aerody-
namic forces, which modifies its drag coefficient and side force coefficient. In this
case, however, deformation of the balloon by aerodynamic forces will be negligibly
small. In the case of a 10-m-diameter balloon, for example, the internal–external
pressure differential at the top of the balloon due to static pressure is about 100 Pa
on the ground, whereas, the dynamic pressure on a balloon ascending at 5 m/s is an
order of magnitude smaller, being about 15 Pa. In addition, the coefficients CD and
CY also include the air resistance originating from the uninflated lower part of the
balloon. For large balloons that are usually used in the earth’s stratosphere, CD near
the ground is of the order of 0.3.

If we take ϕ to be the angle between the vector i and the vector obtained by
projecting vector vw − vb onto the xy plane, and if we take Fx, Fy, and Fz to be the
respective components in the x, y, and z directions of the aerodynamic force F acting
on the balloon, we obtain

Fx = (FD sinα +FY cosα)cosϕ, (2.65)

Fy = (FD sinα +FY cosα)sinϕ, (2.66)

Fz = −FD cosα +FY sinα. (2.67)

At this point, for a balloon of mass mb, a payload of mass mp suspended from the
bottom of the balloon, and ballast of mass mc loaded therein, the balloon system
mass (or the gross system mass) mG is given by

mG = mb +mp +mc. (2.68)

In addition, for lifting gas of mass mg, the total balloon system mass mt including
the mass of the lifting gas is defined by

mt = mG +mg. (2.69)
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The mass mv is equal to the sum of mt and the added mass determined by the direc-
tion of acceleration.

mv = mt +CmρaVb. (2.70)

Here the balloon’s added mass coefficient Cm varies depending on the direction of
the balloon’s acceleration. For a sphere, it is 0.5, whereas for a zero-pressure bal-
loon, vertical component of Cm varies from about 0.4 when the balloon is launched
to 0.65 when the balloon has fully expanded. Conversely, the horizontal compo-
nent of Cm decreases from 0.65 at the balloon launch to 0.4 when the balloon has
expanded [15].

Based on the above, the equations of motion for the balloon are given as follows.

mv
d2xb

dt2 = Fx, (2.71)

mv
d2yb

dt2 = Fy, (2.72)

mv
d2zb

dt2 = (ρaVb −mt)g+Fz. (2.73)

If we assume an ideal gas, the atmospheric density ρa is expressed by

ρa =
Ma pa

RTa
, (2.74)

where pa is the atmospheric pressure, Ta is the atmospheric temperature, Ma is the
average molecular weight of air, and R is the gas constant. If we assume that the
lifting gas is an ideal gas, the balloon volume Vb can be expressed as

Vb =
mgRTg

Mg pg
, (2.75)

where Mg, Tg, and pg are the lifting gas’ molecular weight, temperature, and pres-
sure, respectively. In a zero-pressure balloon, pg and pa can generally be considered
to be equal. For a volumetric venting rate e1 from the venting duct installed in the
bottom part of the balloon and a lifting gas volumetric exhaust rate e2 from the ex-
haust valve installed in the apex of the balloon, the mass balance for the lifting gas
is

dmg

dt
= −ρg(e1 + e2), (2.76)

or equivalently,
dmg

dt
= − pgMg

RTg
(e1 + e2), (2.77)

where

e1 = c1A1

√
2Δp1

ρg
, (2.78)
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e2 = c2A2

√
2Δp2

ρg
, (2.79)

where A1 is the total cross-sectional area of the venting duct and A2 is the total
opening area of the exhaust valve. c1 and c2 are the respective flow rate constants
that vary with number and shape and are equal to the product of the flow contraction
coefficient and the rate coefficient. In addition, Δp1 and Δp2 indicate the pressure
differentials between the lifting gas and the surrounding atmosphere at the end of
the venting duct and at the opening of the exhaust valve, respectively.

The balloon system mass is reduced by dropping of ballast. The mass drop rate
for the ballast is e3. More specifically,

dmc

dt
= −e3. (2.80)

To determine the lifting gas temperature Tg, it is necessary to consider the heat flow
into and out of the balloon. If the heat that flows into the balloon envelope and the
lifting gas are denoted by qe and qg, respectively, the envelope temperature Te and
the lifting gas temperature Tg can be expressed by the following two heat transfer
equations:

mece
dTe

dt
= qe, (2.81)

mgcpg
dTg

dt
= qg +Vb

dpg

dt
, (2.82)

where me is the mass of the envelope (which is different from the mass of the balloon
mb), ce is the specific heat of the envelope, and cpg is the specific heat of the lifting
gas at constant pressure. By using (2.75) and the following equation

dpa = −ρagdz, (2.83)

which expresses the relationship between the atmospheric pressure and density de-
scribed in Sect. 2.3.1.3, (2.82) may be rewritten as [16]

mg
dTg

dt
=

qg

cpg
− gMamgTg

cpgTaMg

dzb

dt
. (2.84)

The first term on the right-hand side is the heat influx to the lifting gas, and the
second term is the effect of adiabatic expansion (or compression). Further details
about the above-mentioned qe and qg are given in Sect. 2.4.4.

2.4.2 Vertical Motion of Balloons

At this point we describe a basic flight in which a balloon ascends and floats.
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2.4.2.1 Stable Floating Condition

When a balloon is in a stable floating condition at a certain altitude, (2.73) is the
equation for simple static balance.

(ρaVb −mt)g = 0. (2.85)

Treating the atmosphere as an ideal gas, this equation may be rewritten as follows
by using (2.74) and (2.75).

mt

mg
=

Ma paTg

Mg pgTa
. (2.86)

If we define the ratio of the molecular weights of the gasses M̃ here as

M̃ =
Ma

Mg
, (2.87)

an equation describing the general floating condition of a balloon is obtained from
(2.86) as follows mt

mg
= p̃−1

g T̃gM̃, (2.88)

where p̃g and T̃g are the lifting gas pressure and temperature dimensionalized by the
pressure and temperature of the surrounding atmosphere, respectively.

p̃g =
pg

pa
, (2.89)

T̃g =
Tg

Ta
. (2.90)

In super-pressure balloons, p̃g > 1, whereas in zero-pressure balloons and in par-
tially inflated balloons, ordinarily p̃g = 1, but even in the floating condition, the gas
temperature and the surrounding atmospheric temperature are generally different.
The floating condition for this kind of zero-pressure balloon is expressed by

mt

mg
= T̃gM̃. (2.91)

If the lifting gas pressure and temperature are equal to the pressure and temperature
of the surrounding atmosphere respectively, this simplifies to

mt

mg
= M̃. (2.92)

2.4.2.2 Motion in the Vertical Direction

The equation for motion in the vertical direction (2.73) can be rewritten as follows
(

mt +CmmgM̃
T̃g

p̃g

)
d2zb

dt2 =
(

mgM̃
T̃g

p̃g
−mt

)
g+Fz, (2.93)
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and if p̃g = 1, this becomes

(
mt +CmmgM̃T̃g

) d2zb

dt2 =
(
mgM̃T̃g −mt

)
g+Fz. (2.94)

Here the first term on the right-hand side expresses the net upward force of the buoy-
ant force excluding gravity, and this is referred to as the free lift. This force changes
during the flight depending on the relationship between the atmospheric temperature
and the lifting gas temperature and on changes in the balloon’s volume.

The ratio of the free lift divided by the acceleration due to gravity to the total
balloon system mass including the lifting gas is denoted by f̃ .

mgM̃T̃g −mt = f̃ mt. (2.95)

In particular, the free lift when leaving the ground is expressed by f̃0mtg. When the
balloon is leaving the ground, it is generally acceptable to consider the atmospheric
temperature and the lifting gas temperature to be equal so that

mgM̃−mt = f̃0mt. (2.96)

2.4.2.3 Balloon’s Rate of Ascent and Free Lift

When a balloon ascends at a constant speed in still air (free lift is positive), (2.94)
becomes

(mgM̃T̃g −mt)g+Fz = 0. (2.97)

If we make use of the expression

Vb = mg
M̃T̃g

ρa
, (2.98)

the balloon’s rate of ascent is given by the following expression

vbz
2 = 2

mgM̃T̃g −mt

ρaCDAb
g. (2.99)

If the shape of the balloon can be approximated by a sphere, (2.99) becomes

vbz
2 = 4

(
2

9π

) 1
3 g

CD

(
mt

ρa

) 1
3 (1+ f̃ )T̃g −1

(1+ f̃ )
2
3 T̃

2
3

g

. (2.100)

The velocity when the balloon leaves the ground vbz,0 may be obtained by setting
T̃g = 1

vbz,0
2 = 4

(
2

9π

) 1
3 g

CD

(
mt

ρa

) 1
3 f̃0

(1+ f̃0)
2
3
. (2.101)
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In stratospheric ballooning, the fraction of free lift is usually expressed by the ra-
tio of free lift to the balloon’s system mass mG. Hence, we introduce f , which is
defined by

f̃ mt = f mG. (2.102)

This f is termed the free lift rate. Unless indicated otherwise, the free lift rate
usually refers to free lift rate when leaving the ground, f0. Furthermore, there is the
following relationship between f0 and f̃0.

f0 =
f̃0M̃

M̃− f̃0 −1
. (2.103)

The following relationship holds when lifting gas is not vented,

f =
f̃ M̃T̃g

M̃T̃g − f̃ −1
. (2.104)

By making use of the free lift rate, the following equation can be used to express the
balloon’s rate of ascent instead of (2.100).

vbz
2 = 4

(
2

9π

) 1
3 g

CD

(
mG

ρa

) 1
3 (1+ f )M̃T̃g − ( f + M̃)

(M̃−1)
1
3
[
(1+ f )M̃T̃g

] 2
3
. (2.105)

The velocity when leaving the ground vbz,0 is obtained by setting T̃g = 1 in (2.105).
For a stratospheric balloon, Fig. 2.29 shows the relationship between the free

lift rate on the ground f0 and mG for different values of the balloon rate of ascent
vbz. The lifting gas is assumed to be helium and the drag coefficient of the balloon
CD is assumed to be 0.3. As mG increases, f0 decreases. During balloon ascent, the
temperature of the lifting gas decreases due to adiabatic expansion. Since the sec-
ond term on the right-hand side of (2.84) expresses this temperature change caused
by adiabatic expansion (which becomes adiabatic compression during descent), the
change in Tg attributable to only adiabatic expansion is expressed by

dTg

dz
= −gM̃T̃g

cpg
. (2.106)

Using this equation, we consider the hypothetical case of ascent from a state in
which there is no difference between the atmospheric temperature and the lifting
gas temperature (T̃g = 1). By calculating the change in helium gas temperature with
altitude, the temperature drop with altitude is found to be −13.7 K/km. In the same
way, the temperature drop with altitude due to atmospheric adiabatic expansion for
dry air is −9.8 K/km. The actual tropospheric temperature drop with altitude is low
at −6.5 K/km, but this is due to the effects of water vapor (see Sect. 3.1.2 for a
detailed explanation of changes in atmospheric temperature with altitude).
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Fig. 2.29 Relationship between the balloon system mass and the free lift rate required to obtain a
specified rate of ascent. The solid line and the dashed lines show the case when T̃g = 1

In other words, based just on the effect of adiabatic expansion of the atmosphere
and the lifting gas, the difference in the temperature drop with altitude is −7.2 to
−3.9 K/km, and left this way, the temperature difference will increase with ascent. In
reality, however, the lifting gas is warmed by convective flow with the atmosphere
and by radiation. In addition, if the temperature of the lifting gas decreases, the
buoyant force and rate of ascent will also decrease, counteracting the effects of
adiabatic expansion. Because of these factors, the lifting gas temperature usually
remains a few degrees below the atmospheric temperature when a balloon ascends.

By introducing this temperature drop, the free lift rate required for a certain bal-
loon ascent speed (5 m/s) is indicated by the dotted line in Fig. 2.29. As for the lines
shown in Fig. 2.29, at their respective ground conditions T̃g = 0.985 corresponds to
Tg − Ta = −4.3◦C; T̃g = 0.970 corresponds to Tg − Ta = −8.6◦C, and T̃g = 0.955
corresponds to Tg −Ta = −13◦C.

Ordinarily, the ratio of the heat loss due to adiabatic expansion to the heat influx
by convective and radiative heat transfers increases as the cube root of the balloon
volume. Therefore, if mG increases, the increase in the free lift rate necessary to
compensate the buoyancy loss caused by the temperature drop in order to obtain the
required rate of ascent will become larger.

In fact, the free lift rate necessary to obtain a rate of ascent of 5 m/s in Fig. 2.29
is approximately equal to the curve shown at T̃g = 0.985 when mG is small, and it
approaches the line T̃g = 0.970 as mG becomes larger. In other words, the lifting
gas temperature for a normal balloon is about 5◦C below the temperature of the
surrounding atmosphere, and for large balloons exceeding 1 ton, it is more than 7◦C
lower.

As (2.100) shows, if the free lift rate does not change, the balloon rate of ascent
is proportional to the −1/6 power of the atmospheric density, and it increases with
altitude. In actual fact, however, the free lift rate due to adiabatic expansion given
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above decreases in normal ascent. Consequently, there is no marked change in the
rate of ascent for large balloons. This is because if the rate of ascent increases,
the buoyancy decreases due to the increase in the temperature drop rate caused by
adiabatic expansion resulting in a drop in the rate of ascent.

On the one hand, however, for the case when the reduction in the atmospheric
temperature with height is very high (as when passing through the tropopause (see
Sect. 3.1.2), for example), the rate of ascent decreases considerably due to the sud-
den increase in the temperature difference between the atmosphere and lifting gas.
For details, refer to Sect. 2.4.4. On the other hand, in the case of small high-altitude
balloons whose ratio of the volume at full expansion to that on the ground is around
1,000, after they clear the tropopause, the tendency for the rate of ascent to increase
with altitude becomes stronger.

2.4.2.4 Balloon Floating Altitude

The line denoted a in Fig. 2.30 represents the variation in the atmospheric density
with altitude. The horizontal axis is the logarithm of density. If we assume that for
a balloon that is ascending the temperatures of the lifting gas and the atmosphere
are the same (T̃g = 1), the balloon density ρb, which is defined by the following
equation, is smaller than ρa by the amount of free lift, and the balloon ascends along
the line labeled “b” in the figure.

ρb =
mt

Vb
. (2.107)

The altitude at which the internal pressure of the balloon and the atmospheric pres-
sure are equal is called the pressure altitude, and this point is regarded as State 1.
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On the one hand, for balloons such as super-pressure balloons that do not vent
gas, the balloon continues to ascend still further from State 1, until the balloon
density and the atmospheric density are equal. This point is called State 2. On the
other hand, in the case of a zero-pressure balloon, ascent continues further from
State 1 at constant Vb while venting the free-lift portion of lifting gas and maintains a
constant altitude after ρb = ρa. The altitude at this point is called the density altitude,
and it is regarded as State 3.

The density altitude when the lifting gas temperature and the atmospheric tem-
perature are equal is called the isothermal density altitude, and it is determined by

ρa3 =
mGM̃

Vbmax(M̃−1)
, (2.108)

where Vbmax is the balloon’s maximum volume. However, usually, the lifting gas
temperature is different from the atmospheric temperature, and the actual achievable
altitude is given by

ρa3 =
mGM̃T̃g

Vbmax(M̃T̃g −1)
. (2.109)

Next, during the ascent stage after leaving the ground until reaching State 1, at which
the venting of lifting gas begins, the following equation holds

ρa =
mt

Vb
(1+ f̃0)T̃g. (2.110)

This means that if ρa > ρb, i.e., T̃g > 1/(1+ f̃0), the balloon ascends, and if ρa < ρb,
i.e., T̃g < 1/(1 + f̃0), the balloon starts to descend. Usually, because T̃g < 1 during
ascent, the balloon ascends along line c, which lies closer to line a than to line b in
Fig. 2.30.

The altitude of State 1 is

ρa1 =
mt

Vbmax
(1+ f̃0)T̃g =

mG

Vbmax

1+ f0

M̃−1
M̃T̃g. (2.111)

For super-pressure balloons that do not vent gas, if the internal balloon gas pressure
pg is greater than the atmospheric pressure pa, in other words, if

M̃(1+ f0)T̃g

M̃ + f0
> 1, (2.112)

then the achievable altitude will be nearly independent of the lifting gas temperature
and will be given by

ρa2 =
mG

Vbmax

M̃ + f0

M̃−1
. (2.113)
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Table 2.2 Differences in pressure altitude and density altitude

Density f0 = 0.1 f0 = 0.3
T̃g = 1 T̃g = 0.95 T̃g = 1.05 T̃g = 0.95

ρa1 1.276 1.213 1.340 1.433
ρa2 1.176 1.176 1.176 1.208
ρa3 1.160 1.170 1.152 1.170

When the lifting gas temperature drops (such as at night) in cases where the decrease
in the internal pressure with the temperature drop is larger than the pressure propor-
tion equivalent to the free-lift gas, the balloon is no longer a super-pressure balloon
and has become a zero-pressure balloon.

As an example, Table 2.2 shows, for a stratospheric balloon, how the altitude
(atmospheric density) changes for the cases when f0 = 0.1 and f0 = 0.3 in States
1–3. The atmospheric density (and hence the altitude) for each state may be deter-
mined by multiplying the values shown in the table by mG/Vbmax. Specifically, if
we assume that mG/Vbmax = 0.0073, then for the case where f0 = 0.1 and T̃g = 1,
the altitude difference between States 1 and 3 will be about 530 m, and the altitude
difference between States 2 and 3 will be about 190 m. If the free lift rate becomes
larger, for f0 = 0.3 and T̃g = 0.95, the altitude difference between States 1 and 2
will be about 1,300 m.

Usually, a balloon enters a level flight with a low temperature T̃g < 1, and sub-
sequently, because the gas warms, and the temperature rises during the day, the
temperature becomes T̃g > 1, and the balloon climbs slightly and once again enters
a level flight; this is indicated by line c in Fig. 2.30. In Table 2.2, T̃g changes from
0.95 to 1.05.

2.4.2.5 Upward Motion Operation

Line c in Fig. 2.30 shows the case where ascent is stopped by forcibly exhausting
gas through the exhaust valve during ascent. When ballast is subsequently dropped
and the balloon climbs again (shown by line c in Fig. 2.30), the final float altitude
increases. On the other hand, when the lifting gas temperature drops at night, the
balloon starts to descend as indicated by line d in Fig. 2.30. The descent stops if bal-
last is jettisoned since the balloon density decreases as shown by line d in Fig. 2.30.

2.4.3 Horizontal Motion of Balloons

As shown in (2.71) and (2.72), balloon motion in the horizontal direction is governed
by the aerodynamic forces produced by the difference between the velocity of the
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Fig. 2.31 Balloon motion when there is a step change in the speed of the surrounding wind

balloon in the horizontal plane and the wind velocity. If the wind velocity does not
vary with time and location, this difference in velocity gradually disappears, and
ultimately, the balloon moves at the same speed as the surrounding winds. However,
since the wind varies with location, altitude, and time, as well as fluctuating abruptly,
the horizontal motion of the balloon is not necessarily the same as the movement of
the surrounding atmosphere. In particular, because a balloon at a high altitude has
an extremely large volume, it is necessary to account for the slow response of the
balloon to changes in the wind.

As a simple example, Fig. 2.31 shows how the speed of a balloon changes with
time when the wind speed of the surrounding air changes suddenly by 2 m/s. For
comparison, the motion of a radiosonde rubber balloon used in upper atmosphere
observations (Sect. 3.6) is also shown.

The time required for a suddenly produced difference between the wind’s veloc-
ity and the velocity of a small rubber balloon to diminish to 25% of its initial value
is approximately 20 s at an altitude of 15 km, and even at an altitude of 30 km it
is about 40 s. By contrast, the time required for a balloon having a balloon system
mass of 1,000 kg is approximately 3 min at an altitude of 15 km and about 7 min at
an altitude of 30 km, and this time extends to 15 min at an altitude of 45 km. While
this is an extreme example, it is normal for balloons having diameters in the tens
of meters or larger to require several minutes to acquire almost the same velocity
vector as that of the surrounding wind. This means that a balloon ascending at 5 m/s
will have ascended several kilometers by the time it changes direction.

2.4.4 Balloon Heat Balance

In this section, we describe the balloon heat balance that determines the temperature
of the lifting gas. In other words, we determine qe and qg in (2.18) and (2.82). In the
following description, “atmosphere” refers to the planetary atmosphere in which the
balloon is flying, and “ground surface” means the ground surface of the planet.
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As shown in Fig. 2.27, in addition to absorbing solar radiation, the envelope and
lifting gas of a balloon flying in the atmosphere emit long-wavelength radiation into
space and to the ground surface. In addition, the ground surface and atmosphere
reflect part of the solar radiation energy, and along with infrared radiation from the
ground surface, this radiation is partially absorbed by the balloon envelope and lift-
ing gas. The reflection from the ground surface varies greatly depending on latitude,
the condition of the ground surface, and whether or not there are clouds. In addition,
there is heat transfer resulting from convective flow between the envelope and atmo-
sphere and between the envelope and lifting gas. The radiative heat transfer between
the envelope and lifting gas may be neglected since the temperature difference be-
tween them is small.

2.4.4.1 Envelope and Lifting Gas Heat Transfer

Here, we approximate the balloon as being spherical for simplicity, and denote its
effective cross-sectional area as Ae, and its effective surface area as Se. The heat
flow into the balloon’s envelope qe and lifting gas qg are given by the following
equations, respectively

qe = α̃eI0(Ae +FbsasSe)+ ε̃eσSe(FbsT 4
s −T 4

e )

+ ε̃σSe(T 4
g −T 4

e )+hge(Tg −Te)+hae(Ta −Te)
, (2.114)

qg = α̃gI0 (1+as)Se + ε̃gσSe(T 4
s −T 4

g )

+ ε̃σSe(T 4
e −T 4

g )+hge(Te −Tg)
, (2.115)

where I0 is the solar constant, and it is corrected depending on the altitude and
the solar altitude, as is the reflectance of the ground surface (albedo), and it varies
depending on the location of the balloon, the time, and whether or not there are
clouds. α̃e is the effective solar absorptivity and ε̃e is the effective infrared emissivity
of the envelope; ε̃ is the effective emissivity between the envelope and lifting gas;
and α̃g is the effective solar absorptivity and ε̃g is the effective infrared emissivity
for the lifting gas. Ts denotes the effective temperature of the ground surface viewed
from the balloon, and it varies depending on the altitude, whether it is daytime or
nighttime, and the cloud conditions. hge and hae are the convective heat transfer
coefficients between the lifting gas and envelope and between the envelope and
atmosphere, respectively. σ is the Stefan-Boltzmann constant. In addition, Fbs is the
shape factor from the balloon to the planet, and it is 0.5 for a sphere.

If we consider the reflections from the balloon’s interior, the effective emissivity
and the effective absorptivity of the envelope and lifting gas can be determined using
the following equations [16]

α̃e = αe

(
1+

τe(1−αg)
1− re(1−αg)

)
, (2.116)
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ε̃e = εe

(
1+

τei(1− εg)
1− rei(1− εg)

)
, (2.117)

ε̃ =
εeεg

1− rei(1− εg)
, (2.118)

α̃g =
αgτe

1− re(1−αg)
, (2.119)

ε̃g =
εgτei

1− rei(1− εg)
, (2.120)

where τe is the solar transmissivity of the envelope, τei is the infrared transmissivity
of the envelope, re is the solar reflectivity of the envelope, rei is the infrared reflec-
tivity of the envelope, αe is the solar absorptivity of the envelope, αei is the infrared
absorptivity of the envelope, εe is the infrared emissivity of the envelope, αg is the
solar absorptivity of the lifting gas, and εg is the infrared emissivity of the lifting gas.

In reality, until the balloon is fully inflated, there is excess envelope (film) in the
lower part of the balloon in the circumferential direction, and there are areas that
overlap each other. As a result, the thickness differs depending on the location, and
these equations become more complicated.

By using Nua and Nug to denote the Nusselt numbers for the atmosphere and the
lifting gas, respectively, and the λa and λg to denote the thermal conductivities of
the atmosphere and lifting gas, respectively, the convective heat transfer coefficients
can be expressed by

hge =
Nugλg

Db
, (2.121)

hae =
Nuaλa

Db
, (2.122)

where Db is the balloon diameter.
The Nusselt number for the atmosphere for natural convection is given by

Nua = 2+0.589(GraPra)1/4/[1+(0.469/Pra)9/16]4/9

(Pra ≥ 0.7, GraPra ≤ 1011)
, (2.123)

and for forced convection, it is given by [17, 18]

Nua = 2+0.03Pra
0.33Reb

0.54 +0.35Pra
0.36Reb

0.58. (2.124)

If we consider the presence of natural convection within the balloon, the Nusselt
number for the lifting gas is determined by [18]

Nug = 0.54(GrgPrg)1/4 (GrgPrg < 2×107), (2.125)

Nug = 0.135(GrgPrg)1/3 (GrgPrg > 2×107), (2.126)
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where Gra and Grg are the Grashof numbers for the atmosphere and lifting gas,
respectively, and Pra and Prg are the Prandtl numbers for the atmosphere and lifting
gas, respectively.

With this, the equations describing balloon motion are complete. If (2.71) to
(2.73), (2.114), and (2.115) are solved for specified initial conditions, it is possible to
derive the balloon’s behavior. In the next section, we look at the example of a strato-
spheric balloon over the earth and present a number of examples of calculations.

2.4.4.2 Ascending Motion

The two curves shown in Fig. 2.32 are a comparison of typical calculations for the
cases of stratospheric balloons launched during the day and at night. The appropriate
initial buoyancy is provided so that the average rate of ascent is about 5 m/s, and no
ballast is dropped to correct the speed during flight.

The balloon ascends into the troposphere at roughly constant speed. When past
the tropopause the atmospheric temperature drop ceases, and in due course it rises
with altitude (refer to Sects. 3.1.2 and 3.1.3 for a detailed explanation of the struc-
ture of the stratosphere), but the temperature of the lifting gas continues to fall due
to adiabatic expansion. Consequently, the temperature difference between the at-
mosphere and the lifting gas grows larger, and this results in a substantial drop in
buoyancy. As the figure shows, the balloon’s rate of ascent falls off in this vicinity.
However, during the day, since there is sunlight, this temperature drop is gradually
eliminated compared with that at nighttime as shown in Fig. 2.33a, and the temper-
ature difference does not become much larger.

In addition, the aerodynamic forces in the vertical direction acting on a balloon
are proportional to the balloon’s cross-sectional area, and the buoyancy is propor-
tional to the balloon’s volume. Consequently, as the altitude increases, the upward
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ture. a and b correspond to day and night in Fig. 2.32, respectively:a Day; b Night

force increases in proportion to the third power of the balloon volume. This means
that the rate of ascent increases in proportion to the 1/6-power of the balloon’s vol-
ume. On the one hand, because of the combined effects of this and of sunlight, a
balloon that slows down in the tropopause will start to gradually accelerate.

On the other hand, if a balloon ascends at night, since there is no supply of
thermal energy from sunlight, as shown by the temperature changes in Fig. 2.33b,
the temperature difference that begins in the tropopause does not diminish much. As
a result, the balloon’s rate of ascent beyond the tropopause does not increase very
much. Hence, if there are cold clouds below, the slowing effect may be too large,
and the balloon’s rate of ascent may drop off greatly. Consequently, to avoid such
excessive slowing, the free lift at night is often made larger than that during the day.
In the calculation for the nighttime case shown in Figs. 2.32 and 2.33b, the free lift
rate was increased by approximately 2% compared with that in the daytime.

2.4.4.3 Behavior Near the Float Altitude

Figure 2.34 is an enlargement of part of the altitude changes shown in Fig. 2.32.
As shown in the figure, while the venting of the free-lift portion of the lifting gas
starts a little below the float altitude, because the lifting gas temperature is lower
than the atmospheric temperature, the balloon finishes venting and attains the float
condition at an altitude lower than the isothermal density altitude. Subsequently, in
accordance with the warming of the lifting gas, the balloon oscillates up and down
a number of times and comes to rest at its final float altitude.

Venting of lifting gas is carried out a number of times in response to this oscil-
lation. In the daytime case, because solar radiation induces a large increase in the
temperature of the lifting gas, this up-and-down motion is usually small. However,
these flight situations undergo various changes under different conditions. In the ex-
ample shown in the figure, in the daytime case, the oscillation is small because the
lifting gas temperature increases over the interval that gas is vented and the rate of
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balloon reaches its level flight altitude by changing altitude up and down a few times as shown
by the solid line. Venting of the lifting gas occurs 2–3 times in response. The dashed line shows
the calculation results for the hypothetical case in which it is assumed that there is no temperature
drop due to adiabatic expansion. Since the balloon ascends beyond its level flight altitude due to
its inertial motion, there is excessive venting, and the balloon starts to descend after reaching its
maximum altitude

ascent drops. However, the oscillations repeat in the nighttime example, since a long
time is required for heat exchange with the atmosphere.

If there is no drop in gas temperature during ascent, and if we assume that T̃g = 1
at all times, after the balloon reaches the float altitude, the balloon will ascend to
a higher altitude due to inertial motion, and because lifting gas will be excessively
vented, the balloon will commence to descend at a rate of approximately 1 m/s (as
shown by the dashed line in Fig. 2.34).

2.4.4.4 Infrared Radiation Effects

Figure 2.35 shows the inflow and outflow of heat to the balloon film (envelope) and
lifting gas term-by-term for the two calculations shown in Figs. 2.32 and 2.33.

It shows that, in contrast to the effect of adiabatic expansion, which remains
approximately constant from immediately after launch until just before reaching
float altitude, the quantity of absorbed radiation heat, while initially very small,
gradually becomes larger as the altitude increases, and it exceeds the heat produced
by adiabatic expansion. In particular, the absorption and radiation in the infrared
region are shown to become even larger than the absorbed solar energy.

In the balloon’s float condition, the energy absorbed from the sun, the infrared ab-
sorption from the ground, and the infrared radiation radiated to space are in equilib-
rium. In the float condition, provided the temperature does not change, the quantity
of infrared radiation essentially does not change. However, if the condition under
the balloon changes, the amount of infrared absorbed is expected to change greatly.
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day and night in Fig. 2.32, respectively: a Day; b Night

A typical example of this is the difference between when there are no clouds under
the balloon and when the area under the balloon is covered with cold clouds.

In the daytime, even if the area below the balloon is covered with clouds and the
quantity of infrared radiation from below is reduced, since the reflection of solar
radiation from the clouds compensates this decrease, the quantity of heat absorbed
by the balloon film and lifting gas does not change greatly. Thus, the flight usually
maintains a stable altitude. In contrast, since there is no solar radiation at night, if
the area below is covered with cold clouds, the amount of infrared absorption drops
off, and this is related directly to a drop in the balloon film’s temperature.

Figure 2.36 shows calculation examples for this extreme case. In a period of
30 min, a balloon travels from a location where there are no clouds to a loca-
tion where the area below the balloon is completely covered by clouds. The con-
dition that the effective temperature Ts drops by 20◦C continues for a while, as
shown by the hatched region in the figure. In this kind of extreme case, the balloon
loses substantial buoyancy and starts to descend. The final rate of descent reaches
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0.3–0.4 m/s. However, if the clouds disappear and the infrared absorption is restored,
the balloon stops descending, gradually turns around and starts to ascend again, but
the speed of altitude recovery can be seen to be very slow, being about 0.1–0.3 m/s.

2.4.4.5 Descending Motion

To vary the altitude of a balloon that is in a level-flight condition, ballast is dropped
to ascend, and lifting gas within the balloon is exhausted by opening the exhaust
valve installed in the apex of the balloon to descend.

When descending by exhausting lifting gas from the exhaust valve, in contrast to
the case for ascending, the temperature of the lifting gas increases due to adiabatic
compression. Consequently, although it is assumed that a given rate of descent can
be obtained by exhausting the required amount of gas to lose a certain amount of
buoyancy, as the results of numerical simulations shown in Fig. 2.37 demonstrate,
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Fig. 2.38 Changes in atmospheric temperature, balloon film temperature, and lifting gas tempera-
ture. Figures a and b correspond, respectively, to the case when there is initial exhausting only and
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with just an initial exhausting, the gas temperature increases and the rate of descent
declines, and ultimately, the descent may stop. The temperature change at this time
is shown in Fig. 2.38a.

Consequently, successive exhausting is required to make the balloon descend at
a constant rate. Since the valves normally used are not able to control the flow rate,
exhausting is continued intermittently as shown in the bottom part of Fig. 2.37b in
order to maintain an approximately constant rate of descent. The temperature of the
lifting gas at this time rises above that of the surrounding atmosphere as shown in
Fig. 2.38b.

The phenomena described above occur at altitudes higher than the tropopause.
Since the temperature of the atmosphere rises when the flight altitude falls below
the tropopause, it becomes difficult to stop the balloon’s descent because the rate
of descent rapidly increases even if the successive exhausting is terminated, as the
example of successive exhausting shown in Fig. 2.37 demonstrates.
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