
Perfection is based upon small things,
but perfection itself is no small thing at all.

Michelangelo Buonarroti

Chapter 2

Algorithmics, or What Have
Programming and Baking in
Common?

2.1 What Do We Find out Here?

The aim of this chapter is not to present any magic results or
real miracles. One cannot read Shakespeare or Dostoyevsky in
their original languages without undertaking the strenuous path
of learning English and Russian. Similarly, one cannot understand
computer science and marvel about its ideas and results if one has
not mastered the fundamentals of its technical language.

J. Hromkovič, Algorithmic Adventures, DOI 10.1007/978-3-540-85986-4 2,
c© Springer-Verlag Berlin Heidelberg 2009

37

http://dx.doi.org/10.1007/978-3-540-85986-4_2

38 2 What Programming and Baking Have in Common

As we already realized in the first chapter on computer science
history, the algorithm is the central notion of computer science.
We do not want to take the whole strenuous path of learning all
computer science terminology. We want to show that without using
formal mathematical means, one can impart an intuitive meaning
of the notion of an algorithm which is precise enough to imagine
what algorithms are and what they are not. We start with cooking
and then we discuss to what extent a recipe can be viewed as an
algorithm.

After that, we directly switch to computers and view program-
ming as a communication language between man and machine
and imagine that programs are for computers understandable rep-
resentations of algorithms. At the end of the chapter, you will be
able to write simple programs in a machine language on your own
and will understand to a fair extent what happens in a computer
during the execution of computer instructions (commands).

By the way, we also learn what an algorithmic problem (task) is
and that one is required to design algorithms in such a way that an
algorithm works correctly for each of the infinitely many problem
instances. To work correctly means to compute the correct result
in a finite time. In this way, we build a bridge to Chapter 3, in
which we show how important a deep understanding of the notion
of infinity is for computer science.

2.2 Algorithmic Cooking

In the first chapter, we got a rough understanding of the meaning
of the notion of algorithm or method. Following it, one can say:

An algorithm is an easily understood description of an ac-
tivity leading to our goal.

Hence, an algorithm (a method) provides simple and unambiguous
advice on how to proceed step by step in order to reach our goal.
This is very similar to a cooking recipe. A recipe tells us exactly

2.2 Algorithmic Cooking 39

what has to be done and in which order, and, correspondingly, we
perform our activity step by step.

To what extent may one view a recipe as an algorithm?

To give a simple answer to this question is not easy. But, searching
for an answer, we approach a better understanding of the meaning
of this crucial term.

Let us consider a recipe for an apricot flan of diameter 26 cm.

Ingredients: 3 egg whites

1 pinch of salt

6 tablespoons of hot water

100g cane sugar

3 egg yolks

1 teaspoon of lemon peel

150g flour

1/2 teaspoon of baking powder

400g peeled apricots

Recipe:

1. Put greaseproof paper into a springform pan!

2. Heat the oven up to 180◦C!

3. Heat up 6 tablespoons of water!

4. Mix three egg whites with the hot water and a pinch

of salt, beat them until you get whipped egg white!

5. Beat 100g cane sugar and 3 egg yolks until a solid

cream develops!

6. Add 1 teaspoon of lemon peel to the cream and mix

them together!

7. Mix 150g flour and 1/2 teaspoon of baking powder

and add it to the mixture! Then stir all contents

carefully using a whisk!

8. Fill the baking tin with the cream mixture!

40 2 What Programming and Baking Have in Common

9. Place the skinned apricots on the mixture in

a decorative way!

10. Put the baking tin into the oven for 25-30 minutes

until it gets a light brown color!

11. Take the flan out of the oven and let it cool!

The recipe is available and the only question is whether we are
able to bake the flan by following it. A possible answer may be
that success can depend to some extent on the experience and the
knowledge of the cook.

We are ready to formulate our first requirements for algorithms.

An algorithm has to be such an exact description of the
forthcoming activity that one can successfully perform it
even in the case where one does not have any idea why the
execution of the algorithm leads to the given aim. More-
over, the description (algorithm) has to be absolutely un-
ambiguous in the sense that different interpretations of the
particular instructions are excluded. It does not matter who
executes the algorithm, the resulting activity and so the re-
sulting outcome must be the same, i.e., each application of
the algorithm has to reach the same result.

Now, one can start a long discussion about which of the 11 steps
(instructions) of the recipe above can be viewed as unambiguous
and easily understood by everybody. For instance:

• What does it mean “to beat until then you get whipped
egg white” (step 4)?

• What does it mean “to stir. . . carefully” (step 7)?

• What does “decorative” mean (step 9)?

• What does “light brown” mean (step 10)?

An experienced cook would say: “Alright. Everything is clear, the
description is going into unnecessary detail.” Somebody trying to
bake her/his first cake could require even more help and may even

2.2 Algorithmic Cooking 41

fail to execute the whole procedure on her/his own. And this can
happen in spite of the fact that our recipe is a more detailed and
simpler description than the usual recipes described in cookery
books. What do you think about cookery book instructions such
as:

• Quickly put a little bit of cooked gelatin below the cheese
and stir them thoroughly?

We are not allowed to accept situations in which an experienced
person considers the recipe to be an algorithm and the rest of
the world does not. One has to search for a way in which we
can get general agreement. We already know that an algorithm
is a sequence of instructions that are correctly executable by any
person. This means that before defining the notion of a cooking
algorithm

we have to agree on a list of instructions (elementary oper-
ations) such that each of these instructions can be mastered
by anybody willing to cook or bake.

For instance, such a list can contain the following instructions that
are possibly correctly executable by a robot that does not have any
understanding of cooking and no improvization ability.

• Put x spoons of water into a container!

• Separate an egg into an egg yolk and the egg white!

• Heat the oven up to x◦C!

• Bake for y minutes at x◦C!

• Weigh x g of substance A and put it into a

container!

• Pour x l of liquid B into a pot!

• Stir the content of the container using a whisk for

t minutes!

• Mix the content of the container using a fork for

t minutes!

42 2 What Programming and Baking Have in Common

• Mix the content of the two containers!

• Pour the mixture into the baking tin!

Certainly, you can find many further instructions that one can
consider to be simple enough in the sense that we can expect that
anybody is able to execute them. In what follows we try to rewrite
the recipe in such a way that only simple instructions are applied.

Let us try to rewrite step 4 of our recipe into a sequence of simple
instructions.

4.1 Put the three egg yolks into the container G.

4.2 Put 1g of salt into G.

4.3 Put 6 tablespoons of water into the pot T.

4.4 Heat the water in T up to 60◦C.

4.5 Pour the contents of T into G.

Now, we get trouble. We do not know how to execute the in-
struction “mix until the content of G becomes whipped
egg white”. A solution may be to use some experimental values.
Maybe it takes 2 minutes until the mass is stiff enough. Hence,
one could write:

4.6 Mix the content of G for 2 minutes.

An instruction of this kind may also be risky. The time of mixing
depends on the speed of mixing, and that may vary from person
to person. Hence, we would prefer to stop mixing approximately
at the moment when the mass became stiff. What do we need for
that? We need the ability to execute tests in order to recognize
the moment at which the whipped egg white is ready. Depending
on the result of the tests, we have to make a decision on how to
continue. If the mass is not stiff, we have to continue to mix for a
time. If the mass is stiff then the execution of step 4 is over and
we have to start to execute step 5.

How can one write this as a sequence of instructions?

2.2 Algorithmic Cooking 43

4.6 Mix the content of G for 10 seconds.

4.7 Test whether the content of G is stiff or not.

If the answer is “YES”, then continue with step 5.

If the answer is “NO”, then continue with step 4.6.

In this way, one returns to step 4.6 until the required state of
the mass is reached. In computer science terminology, one calls
steps 4.6 and 4.7 a cycle that is executed until the condition
formulated in 4.7 is satisfied. To make it transparent one uses
a graphic representation such as in Fig. 2.1; this is called a
flowchart.

Fig. 2.1

Can one easily execute the test in step 4.6? Exactly as in the case
of instructions, we have to agree on a list of simply executable
tests. We do not want to discuss a possible execution of the test

44 2 What Programming and Baking Have in Common

in step 4.6 in detail because the author is not an expert in cook-
ing. Originally, I considered putting a teaspoon into the mass and
checking whether it stays up. But a female student explained to
me that this does not work and that instead it is sufficient to make
a cut in the mass using a knife, and when the cut does not close
(i.e., remains open) then the mass is stiff. Examples of other tests
are:

• Test whether the temperature of the liquid in a pot

is at least x degrees.

• Test whether the weight of the content of a

container is exactly x g.

Exercise 2.1 Create a list of instructions and tests you consider anybody could
execute. Then take your favorite recipe and rewrite it using the instructions and the
tests from your list only.

Exercise 2.2 You want to heat 1 l of water up to 90◦C. You are allowed to use
only the following instructions:

• Put the pot T on the hot plate for x seconds and then take it away.

• Pour x l of water into pot T.

Moreover, you are allowed to use the following tests.

• Test whether the water in pot T has reached at least x◦C.

Use this test and the two instructions above to write a cooking algorithm for heating
1 l of water up to 90◦C that enures that the pot is not longer than 15 s on the hot
plate after the water has reached 90◦C.

Whether you believe it or not, after successfully solving these two
exercises you have already been working as a programmer. The
most important fact we learnt by baking is that we cannot speak
about algorithms before the fundamental elements algorithms con-
sist of are fixed. These elements are simple instructions and tests
that everyone can execute without any problem.

2.3 What About Computer Algorithms? 45

2.3 What About Computer Algorithms?

Here, we want to discuss the similarities and the differences be-
tween algorithmic cooking and algorithmic computing in order to
realize exactly what computer algorithms and computer programs
are and what they are not.

Analogous to cooking, one has to fix first a list of fundamental in-
structions (operations) that a computer can execute without any
doubt. To get agreement here is essentially simpler than getting
it by cooking. A computer does not have any intelligence and so
any improvization ability. Due to this, the language of the com-
puter is very simple. Nobody doubts that a computer can add or
multiply two integers or execute other arithmetic operations with
numbers. Similarly, everyone accepts that a computer can com-
pare two numbers as a test. These simple instructions and tests
together with the ability to read the input data and to output the
results are sufficient for describing any algorithm as a sequence of
instructions.

It does not matter whether we consider cooking algorithms or
computer algorithms. Both are nothing other than a sequence of
simple instructions. But there is also an essential difference be-
tween cooking algorithms and algorithms in mathematics and in
computer science. The input of a cooking algorithm is a set of in-
gredients and the result is a meal. The only task is to cook the
aimed product from the given ingredients. Algorithmic tasks are
essentially different. We know that a problem may have infinitely
many problem instances as possible inputs. Consider, for in-
stance, the problem of solving a quadratic equation.

ax2 + bx + c = 0.

The input data are the numbers a, b, and c and the task is to find
all x that satisfy this equation.

For instance, a concrete problem instance is to solve the following
equation:

46 2 What Programming and Baking Have in Common

x2 − 5x + 6 = 0.

Here, we have a = 1, b = −5, and c = 6. The solutions are x1 = 2
and x2 = 3. By substituting these values, one can easily verify that

22 − 5 · 2 + 6 = 4 − 10 + 6 = 0

32 − 5 · 3 + 6 = 9 − 15 + 6 = 0

and so verify that x1 and x2 are really the solutions of the quadratic
equation x2 − 5x + 6 = 0.

Because there are infinitely many numbers, one has infinitely
many possibilities to choose the coefficients a, b, and c of the
quadratic equation. Our clear requirements for an algorithm for
solving quadratic equations is that the algorithm determines the
correct solution for all possible input data a, b, and c, i.e., for each
quadratic equation.

In this way, we get the second basic demand on the definition of
the notion of an algorithm.

An algorithm for solving a problem (a task) has to ensure
that it works correctly for each possible problem instance.
To work correctly means that, for any input, it finishes its
work in a finite time and produces the correct result.

Let us consider an algorithm for solving quadratic equations.
Mathematicians provided the following formulas for computing the
solutions

x1 =
−b +

√
b2 − 4ac

2a

x2 =
−b −

√
b2 − 4ac

2a
,

if b2 − 4ac ≥ 0. If b2 − 4ac < 0, there does not exist any real
solution1 to the equation. These formulas directly provide the fol-
lowing general method for solving quadratic equations.

1 The reason for that is that one cannot take the root of a negative number.

2.3 What About Computer Algorithms? 47

Input: Numbers a, b, and c representing the quadratic equation
ax2 + bx + c = 0.

Step 1: Compute the value b2 − 4ac.

Step 2: If b2 − 4ac ≥ 0, then compute

x1 =
−b +

√
b2 − 4ac

2a

x2 =
−b −

√
b2 − 4ac

2a

Step 3: If b2 − 4ac < 0, write “there is no real solution”.

Now, we believe the mathematicians when they say that this
method really works and we do not need to know why in order
to rewrite it as an algorithm.

However, we want to do more than to transform the description
of this method into a program. The notion of a program is con-
sidered here as a sequence of computer instructions that is rep-
resented in a form that is understandable for a computer. There
are essential differences between the notion of a program and the
notion of an algorithm.

1. A program does not need to be a representation of an algo-
rithm. A program may be a meaningless sequence of computer
instructions.

2. An algorithm does not necessarily need to be written in the
form of a program. An algorithm can also be described in a
natural language or in the language of mathematics. For in-
stance, the use of instructions such as “multiply a and c” or
“compute

√
c” is acceptable for the description of an algorithm

while a program must be expressed in a special formalism of
the given programming language.

We view programming as an activity of rewriting algorithms
(methods, descriptions) into programs. In what follows, we will
program a little bit in order to see how one can create a complex
behavior by writing a sequence of very simple instructions.

48 2 What Programming and Baking Have in Common

In order to be able to read and understand the forthcoming
chapters, it is not necessary to study the rest of this chap-
ter in detail. Hence, anybody not strongly interested in learn-
ing what programming is about and what happens in a com-
puter during the execution of concrete instructions can jump this
part.

We start by listing the simple operations and their representation
in our programming language that we call “TRANSPARENT”.
In passing we show the high-level structure of a computer and
see the main computer actions performed during the execution of
some particular instructions.

We consider a rough, idealized model of a computer as depicted
in Fig. 2.2.

This computer model consists of the following parts:

• A memory that consists of a large number of memory cells.
These memory cells are called registers. The registers are num-
bered by positive integers and we call them addresses of the
registers. For instance 112 is the address of Register(112).
This corresponds to the image in which the registers are houses
on one side of a long street. Each register can save an arbitrarily
large number2.

• A special memory in which the whole program is saved. Each
row of the program consists of exactly one instruction of the
program. The rows are numbered starting at 1.

• There is a special register Register(0) that contains the num-
ber of the just executed instruction (row) of the program.

• A CPU (central processing unit) that is connected to all other
parts of the computer. In order to execute one instruction,

2 In real computers, the registers consist of a fixed number of bits, 16 or 32. The
large integers or real numbers with many positions after the decimal point that
cannot be represented by 32 bits have to be handled in a special way by using
several registers for saving one number. Hence, we have idealized the computer
here in order to remain transparent and we assume that any register can save an
arbitrarily large number.

2.3 What About Computer Algorithms? 49

Fig. 2.2

the CPU starts by reading the content of Register(0) in or-
der to fix which instruction has to be executed. Then, look-
ing at the corresponding instruction of the program, the CPU
fetches the contents of the registers (the numbers saved in
the registers) that are arguments of the executed instructions
and executes the corresponding operation on these data. Fi-
nally, the CPU saves the result in the register determined
by the instruction and adjusts the contents of the register
Register(0) to the number of the instruction to be executed
next.

50 2 What Programming and Baking Have in Common

Additionally, the computer is connected to the world outside.
The input data are waiting in a queue and the computer can
read the first number in the queue and save it in a register. The
computer has also a tape, where it can write the results com-
puted.

Consider an analogy to baking or cooking. The computer is the
kitchen. The registers of the memory are containers, bowls, jars,
etc. Each container has an unambiguous name (exactly as each
register has an address), and because of this one always knows
which container is being considered. The memory containing the
program is a sheet or a cookery book. The CPU is a person or a
cookery robot together with all the other machines such as ovens,
mixers, microwaves, etc. that are available in the kitchen. The
content of Register(0) is the note telling us where we are in
this process of executing the recipe. The inputs are waiting in the
refrigerator or in the pantry. We have to note here that they are
not waiting in a queue, but one can take all the ingredients out and
build a queue that respects the order in which they are needed.
Certainly we do not write the output, instead we put it on the
table.

As we have already learnt by baking, the first step and the cru-
cial point for defining the notion of an algorithm is to agree on a
list of executable instructions (operations). Everybody has to be
convinced about their executability.

In what follows, we prefer to present the possible computer instruc-
tions in natural language instead of using the formal language of
the computer called machine code. We start with the instructions
for reading.

(1) Read into Register(n).

To execute this operation means to take the first number of the
queue and save it in Register(n). In this way this number is
deleted from the queue and the second number of the queue
takes over the first position of the queue.

2.3 What About Computer Algorithms? 51

Example 2.1 Consider the situation in which the three numbers
114, −67, and 1 are waiting to be picked up. All registers of the
memory contain the value 0, except for Register(0) which con-
tains 3. One has to execute the instruction

Read into Register(3)

in the third row of the program. After the execution of this instruc-
tion, Register(3) contains the number 114. Then, numbers −67
and 1 are still waiting in the queue. The content of Register(0)
is increased by 1 and becomes 4, because after executing the in-
struction of the third row of the program one has to continue by
executing the instruction of the next row.

The execution of this instruction is depicted in Fig. 2.3. We omit
describing the whole computer state before and after executing
this instruction and focus on the content of the registers only. �

Fig. 2.3

52 2 What Programming and Baking Have in Common

The next instruction enables us to put a concrete number into a
register without being forced to read it from the input queue

(2) Register(n) ← k

This instruction corresponds to the requirement to put the
number k into the register Register(n). Executing it means
deleting the old content of Register(n). After the execution
of this instruction, this old content is not available anymore, it
is definitely destroyed. There is no change in the queue related
to this instruction.

Example 2.2 Consider that Register(50) contains the number
100. After executing the instruction

Register(50) ← 22

Register(50) contains the number 22. The old content 100 of
Register(50) is not saved anywhere and so it is definitely lost.

If the next instruction is

Read into Register(50)

and the number 7 is waiting in the queue, then after the execution
of this instruction the number 22 in Register(50) is exchanged
for the number 7. �
Exercise 2.3 The numbers 11, 12, and 13 are waiting in the input queue. The
content of Register(0) is 1. Register(2) contains 1117 and Register(3) contains
21. All other registers contain 0.

a) Depict this situation analogously to Fig. 2.3.
b) Execute the following program

1 Read into Register(1)

2 Register(2) ← 100
3 Read into Register(3)

4 Read into Register(2)

Determine and depict the content of all registers and the input queue after the
execution of each particular instruction of the program.

Now we introduce some of the possible arithmetic instructions.

2.3 What About Computer Algorithms? 53

(3) Register(n) ← Register(j) + Register(i)

The meaning of this instruction is as follows. One has to add
the content of Register(j) to the content of Register(i) and
to save the result in Register(n). Executing this instruction,
the original content of Register(n) is overwritten by the re-
sult of the addition. The contents of all other registers remain
unchanged, except for the content of Register(0) that is in-
creased by 1 (i.e., the execution of the program has to continue
with the next instruction). There is also no change in the input
queue.

Example 2.3 Consider the situation (the state of the computer),
in which Register(0) contains 5 and each Register(i) contains
the number i for i = 1, 2, 3, 4, and 5 (Fig. 2.4a). All other regis-
ters contain 0. The 5th row of the program contains the following
instruction:

Register(7) ← Register(1) + Register(4).

Figure 2.4b shows the situation reached after the execution of this
instruction of addition.

The value 1 from Register(1) and the value 4 from Register(4)

are summed (1+ 4 = 5) and the result 5 is saved in Register(7).
The contents of Register(1) and Register(4) do not change
during the execution of this instruction.

Assume that row 6 of the program contains the following instruc-
tion:

Register(7) ← Register(1) + Register(7).

The content of Register(1) is 1 and the content of Register(7)
is 5. Accordingly, the computer computes 1 + 5 = 6 and saves 6
in Register(7). In this way, the original content of Register(7)
is deleted. Executing this instruction, we observe that one is also
allowed to save the result of a computer operation in one of the
two registers containing the operands (the incoming values for the
operation). �

54 2 What Programming and Baking Have in Common

Fig. 2.4

Exercise 2.4 Consider the computer state after executing the first addition (the
instruction in row 5) in Example 2.3. This situation is depicted in Fig. 2.4b. Depict
the memory state (analogously to Fig. 2.4b) after executing the second addition
operation from row 6! After that perform the following three instructions

7 Register(3) ← 101

8 Register(3) ← Register(3) + Register(3)

9 Register(3) ← Register(7) + Register(3)

of the program and depict the final state of the memory.

Analogously to addition one can perform other arithmetic opera-
tions too.

(4) Register(n) ← Register(j) - Register(i)

To execute this operation means to subtract the content of
Register(i) from the content of Register(j) and to save the
result in Register(n).

(5) Register(n) ← Register(j) ∗ Register(i)

2.3 What About Computer Algorithms? 55

The computer has to multiply the contents of the registers
Register(j) and Register(i) and to save the result in Re-

gister(n).

(6) Register(n) ← Register(j) / Register(i)

The computer has to divide the content of Register(j) by the
content of Register(i) and to save the result in Register(n).

(7) Register(n) ←
√
Register(m)

The computer has to compute3 the root of the content of
Register(m) and to save the result in Register(n).

Exercise 2.5 Consider the following situation. All registers except4 for Register(0)
contain the value 0. Register(0) contains the value 1. The numbers a and b are
waiting in the input queue. Explain what result is in Register(3) after the execution
of the following program:

1 Read into Register(1)

2 Register(1) ← Register(1) ∗ Register(1)

3 Read into Register(2)

4 Register(2) ← Register(2) ∗ Register(2)

5 Register(3) ← Register(1) + Register(2)

Similarly to cooking, it is not sufficient to be able to execute some
instructions only. We also need tests that decide about how to
continue in the work. For this purpose, we present the following
two simple basic operations:

(8) If Register(n) = 0, then go to row j

One has to test the content of Register(n). If it is 0, the con-
tent of Register(0) is overwritten by the value j. This means
that the execution of the program is going to continue by exe-
cuting the instruction of row j. If the content of Register(n)
is different from 0, then the computer adds 1 to the content of

3 To compute a root of a number is not a basic instruction of a computer and
we introduce it only because we need it for solving quadratic equations. On the
other hand, there is no doubt that a computer can compute a root of a number,
but to do so one has to write a program as a sequence of arithmetic instruc-
tions.

4 Remember that Register(0) contains the order of the instruction executed.

56 2 What Programming and Baking Have in Common

Register(0) and the work is going to continue by executing
the instruction in the next row.

(9) If Register(n) ≤ Register(m), then go to row j

If the content of Register(n) is not larger than the content of
Register(m), then the next instruction to be executed is the
instruction of row j. Else the computer is going to execute the
instruction of the next row.

The instruction (operation)

(10) Go to row j

is an ultimatum to continue the execution of the program in
row j.

Moreover, we still need operations for outputting (displaying) the
results of the computation.

(11) Output ← Register(j)

The content of Register(j) is written (displayed) as the out-
put.

(12) Output ← “Text”

The given text between “ ” will be displayed. For instance, the
following instruction

Output ← “Hallo”,

results in the word “Hallo” being written on the output tape.

The last instruction is

(13) End.

This instruction causes the end of the work of the computer on
the given program.

Now we are ready to rewrite our algorithm for solving quadratic
equations to a program. To make it transparent, we notice the
current state of registers in parentheses.

2.3 What About Computer Algorithms? 57

Fig. 2.5

Input: Integers a, b, c
Program:

1 Read into Register(1)

{Register(1) contains a}

2 Read into Register(2)

{Register(2) contains b}

3 Read into Register(3)

{Register(3) contains c}

4 Register(4) ← 2

5 Register(5) ← 4

6 Register(6) ← -1

{The state of the memory is described in Fig. 2.5}

7 Register(7) ← Register(2) * Register(2)

{Register(7) contains b2}

8 Register(8) ← Register(5) * Register(1)

{Register(8) contains 4a}

58 2 What Programming and Baking Have in Common

9 Register(8) ← Register(8) * Register(3)

{Register(8) contains 4ac}

10 Register(8) ← Register(7) - Register(8)

{Register(8) contains b2 − 4ac and so the first step of the
method for solving quadratic equations is finished.}

11 If Register(9) ≤ Register(8), then go to row 14

{Since all registers unused up to now contain the value 0, the
execution of the program continues in row 14 if b2 − 4ac ≥ 0,
i.e., if the quadratic equation has a real solution. If b2−4ac < 0,
the computation continues in the next row.}

12 Output ← “There is no solution.”

13 End

{After displaying “There is no solution”, the computer finishes
the execution of the program.}

14 Register(8) ←
√
Register(8)

{Register(8) contains the value
√

b2 − 4ac.}

15 Register(7) ← Register(2) * Register(6)

{Register(7) contains the value −b. The original content b2

of Register(7) is deleted in this way.}

16 Register(6) ← Register(1) * Register(4)

{The situation is depicted in Fig. 2.6.}

17 Register(11) ← Register(7) + Register(8)

18 Register(11) ← Register(11) / Register(6)

{Register(11) contains the first solution x1 = −b+
√

b2−4ac
2a

.}

19 Output ← Register(11)

20 Register(12) ← Register(7) - Register(8)

21 Register(12) ← Register(12) / Register(6)

{Register(12) contains the second solution x2 = −b−
√

b2−4ac
2a

.}

2.3 What About Computer Algorithms? 59

Fig. 2.6

22 Output ← Register(12)

23 End.

A transparent presentation of this program is given in Fig. 2.7.

Exercise 2.6 Describe the content of all registers after the execution of the whole
program!

Exercise 2.7 If b2 − 4ac = 0, then there is only one solution x1 = x2 to this
quadratic equation. Modify the presented program in such a way that in this case
the program outputs first the text “There is only one solution and this is” and then
the value of x1. Additionally, in the case b2 − 4ac > 0 the program has to write the
text “There are two solutions” before displaying x1 and x2.

Exercise 2.8 Explain what the following program computes!

1 Read into Register(1)

2 Read into Register(2)

3 Read into Register(3)

4 Register(4) ← Register(1) + Register(2)

5 Register(4) ← Register(3) + Register(4)

6 Register(5) ← 3

7 Register(6) ← Register(4) / Register(5)

60 2 What Programming and Baking Have in Common

Fig. 2.7

8 Output ← Register(6)

9 End

Use a table to transparently depict the contents of the registers after the execution
of the particular instructions of the program.

2.4 Unintentionally Never-Ending Execution 61

Exercise 2.9 Write a program that, for a given integer x, computes the following
value

3x2 − 7x + 11 .

Exercise 2.10 Write a program that, for four given numbers a, b, c, and x, com-
putes the value

ax2 + bx + c .

Exercise 2.11 Write a program that, for any four given integers a, b, c, and d de-
termines and outputs the maximum of these four values.

It is always necessary to implement a method into a program to
be able to see that the method is really an algorithm. For instance,
if we see that the arithmetic operations and number comparisons
are sufficient for performing the method for solving quadratic equa-
tions, then we are allowed to call this method an algorithm for
solving quadratic equations. Programming as rewriting of a method
into a program is considered as a translation of an algorithm into
the computer language. From the formal point of view this trans-
formation can be viewed as a proof of the automatic executability
of the algorithm described in a natural language.

2.4 How Can the Execution of a Program
Unintentionally Become a Never-Ending
Story?

One of our most important demands on the definition of an algo-
rithm for a computing task is that the algorithm finishes its work
for any input and provides a result. In the formal language of com-
puter science, we speak about halting. If an algorithm A finishes
its work on an input (a problem instance) in a finite time, then we
say that the algorithm A halts on x. In this terminology, we
force a halt of the algorithm on every possible input and in such
a case we say that A always halts.

One could say now: “This is obvious. Who can be interested in
developing programs for solving problems that work infinitely long
and do not provide any output?”. The problem is only that the

62 2 What Programming and Baking Have in Common

algorithm designer or a programmer can unintentionally build a
program that gets into an infinite repetition of a loop. How can
one expect such a mistake from a professional? Unfortunately, this
can happen very easily. The programmer can forget about a special
situation that can appear only under very special circumstances.
Let us return to our cooking algorithms to see how easily a mistake
leading to an infinite work can happen.

We want to make tea by heating water and then putting the tea
into the water. Our aim is to save energy and so to avoid letting
the water boil for more than 20 seconds. Starting with these re-
quirements, one can propose the cooking algorithm presented in
Fig. 2.8.

Fig. 2.8

At first glance, everything looks alright and works until a climber
wants to apply this cooking recipe for preparing tea on the top of
the Matterhorn on some afternoon. Do you already see the prob-

2.4 Unintentionally Never-Ending Execution 63

lem? Water boils at a lower temperature than 100◦C at this alti-
tude and so it may happen that it never reaches 100◦C. Thus, the
answer of our test will always be “NO”. In reality the water won’t
boil forever, because eventually the fuel will run out or the water
will completely vaporize.

We already see where the mistake happened. Writing the recipe,
one forgot to think about this special situation, where the at-
mospheric pressure is so low that the water cannot reach 100◦C.
And the same can happen to anybody, if one does not think
about all possible special problem instances of the given task and
about all special situations that can occur during the computa-
tion. The following example shows such a case for a computer
program.

Example 2.4 Assume, before starting the program, Register(0)
contains 1 and all other registers contain 0. The integers a and b
are waiting in the first input queue. We consider the following
program.

1 Read into Register(1)

2 Read into Register(2)

3 Register(3) ← -1

4 If Register(1) = 0, then go to row 8

5 Register(1) ← Register(1) + Register(3)

6 Register(4) ← Register(4) + Register(2)

7 Go to row 4

8 Output ← Register(4)

9 End

The corresponding graphic representation of this program is pre-
sented in Fig. 2.9.

The goal of this program is to compute a ∗ b. The strategy is to
compute a ∗ b in the following way

64 2 What Programming and Baking Have in Common

Fig. 2.9

b + b + b + . . . + b︸ ︷︷ ︸
a times

,

i.e., to sum a many values b.

Exercise 2.12 Assume a = 3 and b = 7. Execute the computation of the program
on this input. Depict a table that shows the content of all registers after particular
steps.

If a = 0, then the result has to be a · b = 0. The programs work
correctly for a = 0, because a is read into Register(1) and the
test in row 4 leads directly to row 8, in which the value 0 as the
content of Register(4) is displayed.
If a ≥ 0, the execution of the instruction in row 6 causes that b
is added to the content Register(4) that has to contain the final
result at the end of the computation. The execution of the instruc-
tion in row 5 results in a decrease of the content of Register(1)
by 1. At the beginning Register(1) contained a. After the i-th
execution of the loop (see Fig. 2.9) for an i < a, Register(1)
contains a − i and Register(4) contains the number

2.4 Unintentionally Never-Ending Execution 65

b + b + . . . + b︸ ︷︷ ︸
i times

= i · b.

If “Register(1) = 0”, we know that the loop was executed ex-
actly a times and so Register(4) contains the value

b + b + b + . . . + b︸ ︷︷ ︸
a times

= a · b.

In this way we developed a program that can multiply two integers
without using the operation of multiplication. This means that
removing multiplication from the list of our basic instructions does
not decrease the power of our algorithms and so does not affect
our notion of “algorithm”.

But the program in Fig. 2.9 has a drawback. At the beginning, we
said that a and b are integers. What does the program do if a or
b is negative? If b is negative and a is positive, then the program
works orderly. But if a is negative, the content of Register(1)
will never5 be 0 and so the loop will be repeated infinitely many
times. �
Exercise 2.13 How do we proceed in order to modify the program in Fig. 2.9 to a
program that correctly multiplies two integers a and b, also when a is negative?

Exercise 2.14 Try to write a program that computes the sum a + b for two given
natural numbers a and b and that uses only the new arithmetic instructions

Register(i) ← Register(i)+1
Register(j) ← Register(j)-1,

which increase respectively decrease the content of a register by 1. All other arith-
metic operations are not allowed and the only allowed test operation is the question
whether the content of a register is 0 or not.

Finally, one can see that all algorithms can be implemented as
programs that use the test on 0, addition by 1, subtraction by 1,
and some input/output instructions only. Therefore, there is no
doubt about the automatic executability of algorithms.

5 At the beginning Register (1) gets the negative value a that is only going to be
decreased during the run of the program.

66 2 What Programming and Baking Have in Common

Only for those who want to know the whole list of basic com-
puter instructions do we present more details. First of all, com-
puting the root of a number is not a basic instruction. To com-
pute the root of an integer, one has to write a program that
uses the arithmetic operations +,−, ∗, and / only. Since this re-
quires a non-negligible effort we avoid developing such a program
here.

On the other hand, some indispensable basic instructions are still
missing. To see this, consider the following task. The input is a
sequence of integers. We do not know how many there are. We
only recognize the end of the sequence by reading 0, which can be
viewed as the endmaker of the sequence. The task is only to read all
integers of the sequence and to save all of them in Register(101),
Register(102), Register(103), etc., one after another. This sav-
ing is finished when the last integer read is 0. One could start to
design a program as follows:

1 Read into Register(1)

2 If Register(1) = 0, then go to row �

3 Register(101) ← Register(1)

4 Read into Register(1)

5 If Register(1) = 0, then go to row �

6 Register(102) ← Register(1)

7 Read into Register(1)

8 If Register(1) = 0, then go to row �

9 Register(103) ← Register(1)
...

We always read the next number into Register(1), and if the
number is different from 0 then we save it in the first free register
after Register (101). The problem is that we do not know how to
continue writing the program. If the input queue contains 17,−6,

2.4 Unintentionally Never-Ending Execution 67

and 0, then we are already done. If the queue contains 1000 integers
different from 0, then this program has to have 3000 rows. But we
do not know when to stop writing the program and so we do not
know where to put the row with the instruction end. We used the
notation � in the program, because we did not know where to put
end. Certainly we are not allowed to write an infinite program. A
common idea in similar situations is to use a loop. One could try
to design a loop such as that in Fig. 2.10.

Fig. 2.10

The only problem is that we do not know in which Register(�)

the actual integer has to be saved. Clearly, we cannot always use
the same integer �, because we want to save all integers. We know
that we want to save the integer at the address 100 + i in the i-
th run of the loop. But we are not able to do this, because our
instructions allow us to use a fixed address for � in Register(�).

Therefore, we introduce new instructions that use so-called indi-
rect addressing. The instruction

68 2 What Programming and Baking Have in Common

(14) Register(Register(i)) ← Register(j)

for positive integers i and j means that the content of Register(j)
has to be saved in the register, whose address is the content of
Register(i).

Is this confusing? Let us explain it transparently using an ex-
ample. Assume that the content of Register(3) is 112 and that
Register(7) contains 24. The computer has to execute the in-
struction

Register(Register(3)) ← Register(7).

First, the computer takes the content of Register(3) and sees
that it is 112. Then the computer executes the already known
instruction

Register(112) ← Register(7).

In this way, the number 24 (the content of Register(7)) is saved
in Register(112). The contents of all registers except for Regis-
ter(112) remain unchanged.

Exercise 2.15 Most of the computer instructions introduced have a version with
indirect addressing. Try to explain the meanings of the following instructions!

a) Register(k) ← Register(Register(m))

b) Register(Register(i)) ← Register(l)*Register(j)

Using indirect addressing one can solve our problem of saving data
of unknown number as depicted in Fig. 2.11. We use Register(2)
for saving the address at which the next integer has to be saved.
At the beginning, we put 101 into Register(2), and then, after
saving the next integer, we increase the content of Register(2)
by 1. The number 1 lies in Register(3) during the whole compu-
tation.

Exercise 2.16 The input queue contains the integer sequence 113,−7, 20, 8, 0. Sim-
ulate step by step the work of the program in Fig. 2.11 on this input! Determine the
contents of the registers with the addresses 1, 2, 3, 100, 101, 102, 103, 104, and 105
after each step! Assume that at the beginning all registers contain 0.

2.5 Summary 69

Fig. 2.11

2.5 Summary or What We Have Learnt Here

It does not matter whether you believe it or not, if you were able
to solve a few of the exercises formulated above then you have
already programmed and so you have learnt a little bit about what
it means to work as a programmer. But this was not the main goal
of this chapter.

Our aim was to explain the meaning of the notion of an algorithm.
We understand that our expectation on the definition of the no-
tion of an algorithm as a formalization of the notion of a method
corresponds to the following requirements:

70 2 What Programming and Baking Have in Common

1. One has to be able to apply an algorithm (a method) even if
one is not an expert in solving the considered problem. One
does not need to understand why the algorithm provides the
solution of the problem. It is sufficient to be able to execute the
simple activities the algorithm consists of. Defining the notion
of an algorithm, one has to list all such simple activities and
everybody has to agree that all these activities are executable
by a machine.

2. An algorithm is designed not only to solve a problem instance,
but it must be applicable to solving all possible instances of a
given problem. (Please be reminded that a problem is a general
task such as sorting or solving quadratic equations. A problem
instance corresponds to a concrete input such as “Sort the in-
teger sequence 1, 7, 3, 2, 8” or “Solve the quadratic equation
2x2 − 3x + 5 = 0”.)

3. We require a guarantee that an algorithm for a problem suc-
cessfully finds a solution for each problem instance. This means
that the algorithm always finishes its work in a finite time and
its output corresponds to a correct solution to the given input.

An algorithm can be implemented as a program in a programming
language. A program is an algorithm representation that is under-
standable for the computer. But a program is not a synonym of
the notion of an algorithm. A program is only a sequence of in-
structions that are understandable and executable by a computer.
This instruction sequence does not necessarily lead to a reason-
able activity. For instance, the execution of a program can lead to
some pointless computations that do not solve any problem or to
an infinite work in a loop.

Solutions to Some Exercises

Exercise 2.2 A cooking algorithm for heating 1 l of water to 90◦C can be described
as follows:

1. Pour 1 l water into the pot T .
2. Put the pot T on the hotplate for 15 seconds and then take it away.

2.5 Summary 71

3. If the temperature of the water is at least 90◦C, finish the work! Else continue
with step 2.

Exercise 2.3 The development of memory can be transparently represented using
the following table:

1 2 3 4 5

Input queue 11, 12, 13 12, 13 12, 13 13

Register(0) 1 2 3 4 5

Register(1) 0 11 11 11 11

Register(2) 1117 1117 100 100 13

Register(3) 21 21 21 12 12

Register(4) 0 0 0 0 0

The first column represents the state of the memory before the execution of the
program started. The (i + 1)-th column describes the solution immediately after
the execution of the i-th instruction and so before the execution of the (i + 1)-th
instruction.

Exercise 2.8 The given program reads the three integers from the input queue (rows
1, 2, and 3). Then it computes their sum and saves it in Register(4) (program rows
4 and 5). In the program rows 6 and 7 the average of the input integers is computed
and saved in Register(6). The instruction in row 8 displays the average value. The
following table shows the development of the computer states after particular steps.
In contrast to the table in Exercise 2.3, we write the values in the table only when
the content of a register has changed in the previous step.

Input a, b, c b, c c

Register(0) 1 2 3 4 5 6 7 8 9 10

Register(1) 0 a

Register(2) 0 b

Register(3) 0 c

Register(4) 0 a + b a + b + c

Register(5) 0 3

Register(6) 0 a+b+c
3

Output a+b+c
3

	Algorithmics, or What Have Programming and Baking in Common?
	What Do We Find out Here?
	Algorithmic Cooking
	What About Computer Algorithms?
	How Can the Execution of a Program Unintentionally Become a Never-Ending Story?
	Summary or What We Have Learnt Here

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

