
Chapter 2

Representations of Finite Groups

In mathematics and physics, the notion of a group representation is fundamen-
tal. The idea is to study the different ways that groups can act on vector spaces
by linear transformations.

In this chapter, unless otherwise indicated, we shall consider only represen-
tations of finite groups in complex, finite-dimensional vector spaces.

1 Representations

1.1 General Facts

Let G be a finite group. If E is a vector space over K, where K = R or C, we
denote by GL(E) the group of K-linear isomorphisms of E. (The group GL(E)
is not finite unless E = {0}.)

Definition 1.1. A representation of a group G is a finite-dimensional complex
vector space E along with a group morphism of groups ρ : G→ GL(E).

Thus, for every g, g′ ∈ G,

ρ(gg′) = ρ(g)ρ(g′), ρ(g−1) = (ρ(g))−1, ρ(e) = IdE .

The vector space E is called the support of the representation, and the
dimension of E is called the dimension of the representation. We denote such a
representation by (E, ρ) or simply ρ.

If in particular E = C
n, we say that the representation is a matrix repre-

sentation of dimension n.
The fundamental representation of a subgroup G of GL(E) is the represen-

tation of G on E defined by the canonical injection of G into GL(E).
Any representation such that ρ(g) = IdE for each g ∈ G is called a trivial

representation.
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Example 1.2. Here is a first example of a representation of a nonabelian group.
Let t ∈ S3 be the transposition 123 �→ 132 and c the cyclic permutation
123 �→ 231 that generate S3. We set j = e2iπ/3, so that j2 + j + 1 = 0. We can
represent S3 on C

2 by defining

ρ(e) = I, ρ(t) =
(

0 1
1 0

)
, ρ(c) =

(
j 0
0 j2

)
.

Definition 1.3. Let ( | ) be a scalar product on E. We say that the represen-
tation ρ is unitary if ρ(g) is unitary for every g, that is, if

∀g ∈ G, ∀x, y ∈ E, (ρ(g)x | ρ(g)y) = (x | y).

A representation (E, ρ) is called unitarizable if there is a scalar product on
E such that ρ is unitary.

In order to prove the following theorem, as well as many other propositions,
we shall use a fundamental property:

Lemma 1.4. Let G be a finite group. For every function ϕ on G taking values
in a vector space,

∀g ∈ G,
∑
h∈G

ϕ(gh) =
∑
h∈G

ϕ(hg) =
∑
k∈G

ϕ(k). (1.1)

Proof. In fact, once g is chosen, every element of G can be written uniquely in
the form gh (or hg), where h ∈ G. 	


Theorem 1.5. Every representation of a finite group is unitarizable.

Proof. Let (E, ρ) be a representation of a finite group G, and let ( | ) be a
scalar product on E. We consider

(x | y)′ =
1
|G|

∑
g∈G

(ρ(g)x | ρ(g)y),

which is a scalar product on E. In fact, suppose that (x | x)′ = 0, that is,∑
g∈G(ρ(g)x | ρ(g)x) = 0. Then for each g ∈ G, (ρ(g)x | ρ(g)x) = 0, and in

particular, (x | x) = 0, whence x = 0.
This scalar product on E is invariant under ρ. In fact,

(ρ(g)x | ρ(g)y)′ =
1
|G|

∑
h∈G

(ρ(h)ρ(g)x | ρ(h)ρ(g)y)

=
1
|G|

∑
h∈G

(ρ(hg)x | ρ(hg)y) = (x | y)′,

where we have used the fundamental equation (1.1), which holds for any func-
tion ϕ on G. Thus ρ is a unitary representation of G on (E, ( | )′). 	
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1.2 Irreducible Representations

Let (E, ρ) be a representation of G. A vector subspace F ⊂ E is called
invariant (or stable) under ρ (or under G, if the name of the representation
is understood) if for every g ∈ G, ρ(g)F ⊂ F . (since F is finite-dimensional,
the condition ρ(g)F ⊂ F implies ρ(g)F = F .) We can then speak of the repre-
sentation ρ restricted to F , which is a representation of G on F . We denote it
by ρ |F . Such a representation restricted to an invariant subspace is also called
a subrepresentation.

Definition 1.6. A representation (E, ρ) of G is called irreducible if E �= {0}
and if the only vector subspaces of E invariant under ρ are {0} and E itself.

Example. The representation of dimension 2 of S3 defined in Example 1.2 is
irreducible, since the eigenspaces of ρ(t) and ρ(c) have trivial intersection.

Proposition 1.7. Every irreducible representation of a finite group is finite-
dimensional.

Proof. Let (E, ρ) be an irreducible representation of a finite group G and let
x ∈ E. Because the subset {ρ(g)x | g ∈ G} is finite, it generates a finite-
dimensional vector subspace of E. If x �= 0, this vector subspace of E is not
equal to {0}. Because this subspace is invariant under ρ, it coincides with E,
which is thus finite-dimensional. 	


1.3 Direct Sum of Representations

Definition 1.8. Let (E1, ρ1) and (E2, ρ2) be representations of G. Then

(E1 ⊕ E2, ρ1 ⊕ ρ2),

where (ρ1⊕ρ2)(g)(x1, x2) = (ρ1(g)(x1), ρ2(g)(x2)), for g ∈ G, x1 ∈ E1, x2 ∈ E2,
is a representation of G called the direct sum of the representations (E1, ρ1) and
(E2, ρ2).

Clearly a direct sum of representations of strictly positive dimensions cannot
be irreducible, even if the summands are irreducible. For matrix representations
ρ1 and ρ2, the matrices of the direct sum representation of ρ1 and ρ2 are block-
diagonal matrices

(
ρ1(g) 0

0 ρ2(g)

)
.

More generally, if m is a strictly positive integer, we can use recursion to
define the direct sum of m representations ρ1 ⊕· · ·⊕ ρm. If (E, ρ) is a represen-
tation of G we denote by mρ the representation ρ ⊕ · · · ⊕ ρ (direct sum of m
terms) on the vector space E ⊕ · · · ⊕E (m terms).

A representation is called completely reducible if it is a direct sum of irre-
ducible representations.
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Lemma 1.9. Let ρ be a unitary representation of G on (E, ( | )). If F ⊂ E
is invariant under ρ, then F⊥ = {y ∈ E | ∀x ∈ F, (x | y) = 0} is also invariant
under ρ.

Proof. Let y ∈ F⊥. Then, because F is invariant under ρ, for every g ∈ G and
x ∈ F, (x | ρ(g)y) = (ρ(g−1)x | y) = 0. Thus ρ(g)y ∈ F⊥. 	

Theorem 1.10 (Maschke’s Theorem). Every finite-dimensional represen-
tation of a finite group is completely reducible.

Proof. Let (E, ρ) be be a representation of G. By Theorem 1.5, one may
suppose this representation to be unitary. If ρ is not irreducible, let F be a
vector subspace of E invariant under ρ such that F �= {0} and F �= E. Then
E = F ⊕ F⊥, where F (by hypothesis) and F⊥ (by Lemma 1.9) are invariant
under ρ, and dimF < dimE, dimF⊥ < dimE. By induction on the dimension
of E, we obtain the desired result. 	


In fact, this theorem is true under more general conditions. (See the study
of compact groups in Chapter 3.)

1.4 Intertwining Operators and Schur’s Lemma

Definition 1.11. Let (E1, ρ1) and (E2, ρ2) be representations of G. We say
that a linear map T : E1 → E2 intertwines ρ1 and ρ2 if

∀g ∈ G, ρ2(g) ◦ T = T ◦ ρ1(g),

in which case T is called an intertwining operator for ρ1 and ρ2.

The definition can be expressed in the commutativity of the following dia-
gram for each g ∈ G:

E1
T−−−−−−→ E2

ρ1(g)
⏐⏐⏐	

⏐⏐⏐	ρ2(g)

E1
T−−−−−−→ E2

The following expressions are often used to express the same property:

• T is equivariant under ρ1 and ρ2,
• T is a morphism of G-vector spaces,
• T is a G-morphism,
• T ∈ HomG(E1, E2).

If E1 = E2 = E and if ρ1 = ρ2 = ρ, an intertwining operator for ρ1 and ρ2

is just an operator that commutes with ρ.

Definition 1.12. The representations ρ1 and ρ2 are called equivalent if there
is a bijective intertwining operator for ρ1 and ρ2.
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If T is such a bijective intertwining operator, then

∀g ∈ G, ρ2(g) = T ◦ ρ1(g) ◦ T−1.

The existence of an intertwining operator is an equivalence relation on repre-
sentations, which leads to the notion of an equivalence class of representations.
We let ∼ denote this equivalence relation.

Two representations (E1, ρ1) and (E2, ρ2) are equivalent if and only if there
is a basis B1 of E1 and a basis B2 of E2 such that for every g ∈ G, the
matrix of ρ1(g) in the basis B1 is equal to the matrix of ρ2(g) in the basis B2.
In particular, if the representations (E1, ρ1) and (E2, ρ2) are equivalent, then
E1 is isomorphic to E2.

For equivalent matrix representations, we thus obtain similar matrices: if
E1 = E2 = C

n, and if ρ1 and ρ2 are equivalent, then the matrices ρ1(g) and
ρ2(g) are similar via the same similarity matrix for every g.

If ρ0 is an n-dimensional representation of G on E, the choice of a basis (ei)
of E determines a matrix representation (Cn, ρ); by changing to the basis (e′i)
via a matrix T , one obtains the equivalent representation (Cn, ρ′),

ρ′(g) = T ◦ ρ(g) ◦ T−1.

Lemma 1.13. If T intertwines ρ1 and ρ2, then the kernel of T , Ker T , is
invariant under ρ1, and the image of T , ImT , is invariant under ρ2.

Proof. If x ∈ E1 and Tx = 0, then T (ρ1(g)x) = ρ2(g)(Tx) = 0. Thus Ker T is
a subspace of E1 invariant under ρ1.

Let y ∈ Im T . Then, there exists x ∈ E1 such that y = Tx. Therefore
ρ2(g)y = ρ2(g)(Tx) = T (ρ1(g)x), and hence Im T is a subspace of E2 invariant
under ρ2. 	

Lemma 1.14. If T commutes with ρ, each eigenspace of T is invariant under ρ.

Proof. In fact, if Tx = λx, λ ∈ C, then T (ρ(g)x) = λρ(g)x. Thus the eigenspace
of T corresponding to the eigenvalue λ is invariant under ρ. 	

Theorem 1.15 (Schur’s Lemma). Let T be an operator intertwining irre-
ducible representations (E1, ρ1) and (E2, ρ2) of G.

• If ρ1 and ρ2 are not equivalent, then T = 0.
• If E1 = E2 = E and ρ1 = ρ2 = ρ, then T is a scalar multiple of the

identity of E.

Proof. If ρ1 and ρ2 are not equivalent, T is not bijective. Hence either KerT �= {0},
or Im T �= E2. By Lemma 1.13, Ker T is invariant under ρ1. Because ρ1 is irre-
ducible, if Ker T �= {0}, then Ker T = E1; hence T = 0. By Lemma 1.13, Im T
is invariant under ρ2. Because ρ2 is irreducible, if Im T �= E2, then Im T = {0},
and hence T = 0.

If E1 = E2 = E and ρ1 = ρ2 = ρ, then for every g ∈ G, ρ(g) ◦ T = T ◦ ρ(g),
and T commutes with the representation ρ. Let λ be an eigenvalue of T , which
must exist because T is an endomorphism of E, a vector space over C, and let
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Eλ be the eigenspace associated to λ. By Lemma 1.14, Eλ is invariant under ρ.
By hypothesis Eλ �= {0}, therefore, since ρ is irreducible, Eλ = E, which means
that T = λ IdE . We remark that the proof of the second part of the theorem
uses the hypothesis that the vector space of the representation is a complex
vector space. 	


Conversely, if each operator commuting with the representation ρ is a scalar
multiple of the identity, then ρ is irreducible. In fact, if ρ were not irreducible,
the projection onto a nontrivial invariant subspace would be a nonscalar oper-
ator commuting with ρ.

Remark. Lemma 1.14 has very important consequences in quantum mechanics.
The symmetry operators of a system represented by a Hamiltonian Ĥ (an
operator acting on a Hilbert space) are precisely the operators that commute
with Ĥ. For each energy level, that is, for each eigenvalue of the Hamiltonian,
there is a corresponding eigenspace. By this lemma, each eigenspace is the sup-
port of a representation of the group of symmetries of the system. Wigner’s
principle then states that for each energy level, the corresponding representa-
tion is an irreducible representation of the full symmetry group of the system.
The dimension of the representation corresponding to the given energy level is
called the degree of degeneracy of the energy level.

2 Characters and Orthogonality Relations

2.1 Functions on a Group, Matrix Coefficients

We shall denote by F(G), or sometimes by C[G], the vector space of functions on
G taking values in C. When this vector space is equipped with the scalar product
defined below, we call the resulting Hilbert space L2(G). (This definition will
be extended to compact groups.)

We adopt the convention that a scalar product is antilinear in the first
argument and linear in the second.

Definition 2.1. On L2(G), the scalar product is defined by

(f1 | f2) =
1
|G|

∑
g∈G

f1(g)f2(g).

We shall be interested in the matrix coefficients of representations.

Definition 2.2. If ρ is a representation of G on C
n, then for every ordered

pair (i, j), 1 ≤ i ≤ n, 1 ≤ j ≤ n, the function ρij ∈ L2(G) defined for each
g ∈ G to be the coefficient of the matrix ρ(g) in the ith row and the jth column,
(ρ(g))ij ∈ C, is called a matrix coefficient of ρ.

For a representation ρ on a vector space E, we define the matrix coefficients
ρij relative to a basis (ei) satisfying

ρ(g)ej =
∑
i

ρij(g)ei,
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where i is the row index and j is the column index. If ρ is a unitary represen-
tation on a finite-dimensional Hilbert space, then

ρ(g−1) = (ρ(g))−1 = t(ρ(g)).

Hence, in an orthonormal basis,

ρij(g−1) = ρji(g),

and in particular, the diagonal coefficients of ρ(g) and ρ(g−1) are complex
conjugates.

2.2 Characters of Representations and Orthogonality Relations

We denote by Tr the trace of an endomorphism.

Definition 2.3. Let (E, ρ) be a representation of G. The character of ρ is the
function χρ on G taking complex values defined by

∀g ∈ G, χρ(g) = Tr (ρ(g)).

Equivalent representations have the same character.
For a matrix representation of dimension n,

χρ(g) =
n∑
i=1

(ρ(g))ii. (2.1)

On each conjugacy class of G, the function χρ is constant.

Definition 2.4. A class function on G is a function constant on each conjugacy
class.

Thus characters of representations are class functions on the group.

Proposition 2.5. The following are elementary properties of characters:

• χρ(e) = dim ρ.
• ∀g ∈ G, χρ(g−1) = χρ(g).
• The character of a direct sum of representations is the sum of the

characters, χρ1⊕ρ2 = χρ1 + χρ2 .

Proof. The first property is a consequence of formula (2.1). To prove the second
formula, we may assume that ρ is unitary in a certain scalar product and choose
an orthonormal basis. The direct sum property is obvious. 	


If (E1, ρ1) and (E2, ρ2) are representations of the same group G, we define
their tensor product to be (E1 ⊗ E2, ρ1 ⊗ ρ2), where

(ρ1 ⊗ ρ2)(g) = ρ1(g) ⊗ ρ2(g),

for each g ∈ G. (See Exercise 2.5 for a review of the relevant definitions.) The
following is an important property of characters.
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Proposition 2.6. The character of a tensor product of representations is the
product of the characters,

χρ1⊗ρ2 = χρ1 χρ2 . (2.2)

Proof. The equality follows from the fact that the trace of a tensor product of
matrices is the product of the traces. 	


By Proposition 2.5, for representations ρ1 and ρ2 of G,

(χρ1 | χρ2) =
1
|G|

∑
g∈G

χρ1(g
−1)χρ2(g). (2.3)

We shall show that the characters of inequivalent irreducible representations
are orthogonal and that the character of an irreducible representation is of
norm 1.

Proposition 2.7. Let (E1, ρ1) and (E2, ρ2) be representations of G and let
u : E1 → E2 be a linear map. Then the linear map Tu : E1 → E2 defined by

Tu =
1
|G|

∑
g∈G

ρ2(g) u ρ1(g)−1 (2.4)

intertwines ρ1 and ρ2.

Proof. We calculate

ρ2(g) Tu =
1
|G|

∑
h∈G

ρ2(gh) u ρ1(h−1)

=
1
|G|

∑
k∈G

ρ2(k) u ρ1(k−1g),

by the fundamental equation (1.1). Hence,

ρ2(g) Tu = Tu ρ1(g).

The operator Tu is thus an intertwining operator for ρ1 and ρ2. 	


Proposition 2.8. Let (E1, ρ1) and (E2, ρ2) be irreducible representations of G,
let u : E1 → E2 be a linear map, and define Tu by equation (2.4).

(i) If ρ1 and ρ2 are inequivalent, then Tu = 0.
(ii) If E1 = E2 = E and ρ1 = ρ2 = ρ, then

Tu =
Tr u

dimE
IdE .

Proof. The first assertion is clear by Schur’s lemma (Theorem 1.15). For the
second, we need only calculate λ given that Tu = λ IdE . So we obtain
TrTu = 1

|G|
∑
g∈GTru = Tru, and thus λ = Tru

dimE . 	
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Proposition 2.9. Let (E1, ρ1) and (E2, ρ2) be irreducible representations of G.
We choose bases in E1 and E2.

(i) If ρ1 and ρ2 are inequivalent, then

∀i, j, k, �,
∑
g∈G

(ρ2(g))k�(ρ1(g−1))ji = 0.

(ii) If E1 = E2 = E and ρ1 = ρ2 = ρ, then

1
|G|

∑
g∈G

(ρ(g))k�(ρ(g−1))ji =
1

dimE
δkiδ�j .

Proof. We use a basis (ej) of E1, 1 ≤ j ≤ dimE1, and a basis (f�) of E2,
1 ≤ � ≤ dimE2. For u : E1 → E2, Tu is defined by (2.4). We have, for
1 ≤ i ≤ dimE1, 1 ≤ k ≤ dimE2,

(Tu)ki =
1
|G|

∑
g∈G

dimE1∑
m=1

dimE2∑
p=1

(ρ2(g))kp upm (ρ1(g−1))mi.

Let us choose our linear map u to be the map u(�j) : E1 → E2 defined by
u(�j)(ek) = δjkf�. Then

(u(�j))pm = δ�pδjm,

and consequently,

(Tu(�j))ki =
1
|G|

∑
g∈G

(ρ2(g))k�(ρ1(g−1))ji.

Next we apply Proposition 2.8. If ρ1 and ρ2 are inequivalent, then Tu(�j) is
always zero, whence (i). If E1 = E2 = E and ρ1 = ρ2 = ρ, then

1
|G|

∑
g∈G

(ρ(g))k�(ρ(g−1))ji = (Tu(�j))ki =
Tr u(�j)

dimE
δki =

δkiδ�j
dimE

,

which proves (ii). 	


Corollary 2.10. Let (E1, ρ1) and (E2, ρ2) be unitary irreducible representa-
tions of G. We choose orthonormal bases in E1 and E2.

(i ) If ρ1 and ρ2 are inequivalent, then for every i, j, k, l,

((ρ1)ij | (ρ2)k�) = 0.

(ii ) If E1 = E2 = E and ρ1 = ρ2 = ρ, then for every i, j, k, l,

(ρij | ρk�) =
1

dimE
δikδj�.
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Proof. In fact, if ρ1 is unitary for a scalar product on E1 and if the chosen basis
in E1 is orthonormal, then

1
|G|

∑
g∈G

(ρ2(g))k�(ρ1(g−1))ji =
1
|G|

∑
g∈G

(ρ2(g))k�(ρ1(g))ij = ((ρ1)ij | (ρ2)k�).

Proposition 2.9 thus implies (i) and (ii). 	

Theorem 2.11 (Orthogonality Relations). Let G be a finite group.

(i ) If ρ1 and ρ2 are inequivalent irreducible representations of G, then

(χρ1 | χρ2) = 0.

(ii ) If ρ is an irreducible representation of G, then

(χρ | χρ) = 1.

Proof. By the equality (2.3) and the preceding proposition, if ρ1 and ρ2 are
inequivalent irreducible representations, then (χρ1 | χρ2) = 0. If ρ1 = ρ2 = ρ,
then 1

|G|
∑
g∈G ρ(g)iiρ(g

−1)jj = δij
dimE , whence (χρ | χρ) = 1. 	


We define the irreducible characters of G to be the set of characters of
inequivalent irreducible representations of G. We write χρi or even χi to denote
the character of an irreducible representation ρi. The preceding results can be
formulated as follows.

Theorem 2.12. The irreducible characters of G form an orthonormal set in
L2(G).

Corollary 2.13. The inequivalent irreducible representations of a finite group
G are finite in number.

We shall denote by Ĝ the set of equivalence classes of irreducible represen-
tations of G.

2.3 Character Table

“Character table” is the name given to the table whose columns correspond
to conjugacy classes of a group and whose rows correspond to inequivalent
irreducible representations of the group. At the intersection of the row and the
column one writes the value of the character of the representation, evaluated
on an element (any element) of the conjugacy class. Let N be the number of
conjugacy classes of the group G. (In other words, N is the number of columns;
we shall show that it is also the number of rows.) Let gi be an element of G
in the conjugacy class Cgi , 1 ≤ i ≤ N , which consists of |Cgi | elements. Let ρk
and ρ� be irreducible representations of G. Then

(χρk | χρ�) =
1
|G|

N∑
i=1

|Cgi | χρk(gi) χρ�(gi) = δk�.

This formula can be restated as the following result.
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Proposition 2.14. If the ith column is given weight |Cgi |, the rows of the
character table are orthogonal and of norm

√|G|.
We write character tables in the following form:

|Cg1 | . . . . . . |CgN |
g1 . . . . . . gN

. . . . . . . . . . . . . . .
χρk χρk(g1) . . . . . . χρk(gN )
. . . . . . . . . . . . . . .
χρ� χρ�(g1) . . . . . . χρ�(gN )
. . . . . . . . . . . . . . .

2.4 Application to the Decomposition of Representations

We denote by ρ1, . . . , ρN the inequivalent irreducible representations of G.
(We shall see in Corollary 3.7 that this number N equals the number of con-
jugacy classes of G.) More precisely, we choose from each equivalence class of
representations of G a representative that we denote by ρi.

In the equalities below, the equal sign denotes membership in the same
equivalence class.

Theorem 2.15. Let ρ be any representation of G and let χρ be its character.
Then

ρ =
N⊕
i=1

miρi,

where
mi = (χρi | χρ).

Proof. We know by Theorem 1.10 that ρ is direct sum of irreducible repre-
sentations. We can group the terms corresponding to the same equivalence
class of irreducible representations ρi, and we obtain ρ = ⊕Ni=1miρi, for some
nonnegative integers mi. One sees then that χρ =

∑N
i=1mi χρi , and hence by

orthogonality (χρi | χρ) = mi (χρi | χρi) = mi. 	


Definition 2.16. If ρ admits the decomposition

ρ = m1ρ1 ⊕m2ρ2 ⊕ · · · ⊕mNρN ,

then the nonnegative integer mi is the multiplicity of ρi in ρ, and miρi is the
isotypic component of type ρi of ρ.

Corollary 2.17. The decomposition into isotypic components is unique up to
order.

Corollary 2.18. Two representations with the same character are equivalent.
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By the previous theorem,

(χρ | χρ) =
N∑
i=1

m2
i .

Hence we have the following result.

Theorem 2.19 (Irreducibility Criterion). A representation ρ is irreducible
if and only if (χρ | χρ) = 1.

3 The Regular Representation

3.1 Definition

In general, if a group G acts on a set M , then G acts linearly on the space F(M)
of functions on M taking values in C by (g, f) ∈ G × F(M) �→ g · f ∈ F(M),
where

∀x ∈M, (g · f)(x) = f(g−1x).

We can see immediately that this gives us a representation of G on F(M).
Take M = G, the group acting on itself by left multiplication. One obtains a

representation R of G on F(G) called the left regular representation (or simply
regular representation) of G. Thus, by definition,

∀g, h ∈ G, (R(g)f)(h) = f(g−1h).

In the same way one can define the right regular representation R′, associated
to the right action of G on itself, by (R′(g)f)(h) = f(hg). The right and left
regular representations are equivalent. For a finite group G the vector space
F(G) of maps of G into C is finite-dimensional, of dimension |G|. The regular
representation is thus of dimension |G|.

We use the basis (εg)g∈G of F(G) defined by

εg : G→ C

{
εg(g) = 1,
εg(h) = 0, if h �= g.

The regular representation of G satisfies

∀g, h ∈ G, R(g)(εh) = εgh.

In fact, for every k ∈ G, (R(g)εh)(k) = εh(g−1k), and εh(g−1k) = 1 if k = gh,
while εh(g−1k) = 0 otherwise. (In the right regular representation, εh �→ εhg−1 .)

Proposition 3.1. On L2(G) = F(G) with scalar product ( | ), the regular
representation is unitary.
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Proof. For f1 and f2 ∈ L2(G) we have, for every g ∈ G,

(R(g)f1 | R(g)f2) =
1
|G|

∑
h∈G

(R(g)f1)(h)(R(g)f2)(h)

=
1
|G|

∑
h∈G

f1(g−1h)f2(g−1h)

=
1
|G|

∑
k∈G

f1(k)f2(k) = (f1 | f2).

The operator R(g) is thus unitary for every g ∈ G. 	


3.2 Character of the Regular Representation

On the one hand,

χR(e) = Tr(R(e)) = dimF(G) = |G|.

On the other hand, if g �= e, then

χR(g) = Tr(R(g)) = 0

because in this case, for every h ∈ G, R(g)εh �= εh.
The regular representation R is reducible because

∑
g∈G εg generates a vec-

tor subspace W of F(G) of dimension 1 that is invariant under R. In fact, for
every g ∈ G, R(g)(

∑
h∈G εh) =

∑
h∈G εgh =

∑
k∈G εk. Furthermore, R |W is

equivalent to the trivial representation, since for every x ∈ W , R(g)(x) = x.
We shall show that, in fact, the regular representation contains each irreducible
representation of G with multiplicity equal to its dimension.

Example 3.2. The regular representation of S3 on C[S3] is of dimension 6. It
decomposes into the direct sum of the one-dimensional trivial representation,
the one-dimensional sign representation, and two copies of the two-dimensional
irreducible representation studied in Example 1.2.

3.3 Isotypic Decomposition

We now use the notation introduced in Section 2.4.

Proposition 3.3. The decomposition of the regular representation of G into
isotypic components is R = ⊕Ni=1 niρi, where ρi, i = 1, . . . , N , are the irreducible
representations of G, and ni = dim ρi.

Proof. We know that

χR(g) =

{
|G| if g = e,

0 if g �= e,

and hence (χρi | χR) = χρi(e) = dim ρi. 	
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Theorem 3.4. We have
N∑
i=1

(ni)2 = |G|,

where ni = dim ρi.

Proof. We have |G| = χR(e) =
∑N
i=1 niχρi(e) =

∑N
i=1(ni)

2. 	


The equality
∑N
i=1(ni)

2 = |G| is often used, for example, in order to deter-
mine the dimension of a “missing” irreducible representation when one already
knows N − 1 representations.

3.4 Basis of the Vector Space of Class Functions

The vector space of class functions on G taking values in C has for dimension
the number of conjugacy classes of G. We shall show that this is also the number
of equivalence classes of irreducible representations.

Let (E, ρ) be be a representation of G, and let f be a function on G.
We consider the endomorphism ρf of E defined by

ρf =
∑
g∈G

f(g)ρ(g). (3.1)

Thus, by definition, for every x ∈ E, ρf (x) =
∑
g∈G f(g)ρ(g)(x).

Lemma 3.5. The endomorphism ρf has the following properties:

(i) If f is a class function, ρf commutes with ρ.
(ii) If f is a class function and if ρ is irreducible, then

ρf =
|G|(f | χρ)

dim ρ
IdE .

Proof. For every function f , we have

ρf ◦ ρ(g) =
∑
h∈G

f(h)ρ(h)ρ(g) =
∑
h∈G

f(h)ρ(hg)

=
∑
k∈G

f(kg−1)ρ(k) =
∑
h∈G

f(ghg−1)ρ(gh).

If f is assumed to be a class function, we obtain

ρf ◦ ρ(g) = ρ(g)
∑
h∈G

f(h)ρ(h) = ρ(g) ◦ ρf .

Let us prove (ii). By (i) and Schur’s lemma (Theorem 1.15), there is a
λ ∈ C such that ρf = λIdE . On the other hand, Trρf =

∑
g∈G f(g)Trρ(g) =∑

g∈G f(g)χρ(g) = |G|(f | χρ), from which the result follows. 	
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Theorem 3.6. The irreducible characters form an orthonormal basis of the
vector space of class functions.

Proof. We know that the characters ρ1, . . . , ρN of inequivalent irreducible
representations of G form an orthonormal set in L2(G) (Theorem 2.12). Let
us show that this set spans the vector subspace of class functions. Let f
be a class function such that for 1 ≤ i ≤ N , (f |χρi) = 0. We consider
(ρi)f =

∑
g∈G f(g)ρi(g). By the previous lemma, (ρi)f = 0, and we deduce,

by decomposition, that for any representation ρ we have ρf = 0. In particular,
Rf = 0, where R is the regular representation. Thus,

0 = Rf (εg) =
∑
h∈G

f(h)R(h)(εg) =
∑
h∈G

f(h)εhg,

for g ∈ G, and, in particular,

0 = Rf (εe) =
∑
h∈G

f(h)εh = f,

so f = 0. 	

Corollary 3.7. The number of equivalence classes of irreducible representa-
tions of a finite group is equal to the number of conjugacy classes of that group.

In other words, the character table is square.

Proposition 3.8. The columns of the character table of a finite group G are
orthogonal and of norm

√|G|/|Cg|, where |Cg| denotes the number of elements
of the conjugacy class of g. Explicitly,

N∑
i=1

χρi(g)χρi(g
′) = 0, if g and g′ are not conjugate,

1
|G|

N∑
i=1

χρi(g)χρi(g) =
1

|Cg| .

In particular, when g = e, we recover the equation
∑N
i=1(dim ρi)2 = |G|.

Proof. By Theorem 3.6, if f is a class function, then

f =
N∑
i=1

(χρi | f)χρi .

For g ∈ G, consider the class function fg that takes the value 1 on g and the
value 0 on every other conjugacy class of G. We have

(χρi | fg) =
1
|G|

∑
h∈G

χρi(h)fg(h)

=
|Cg|
|G| χρi(g) ,
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and thus fg = |Cg|
|G|

∑N
i=1 χρi(g)χρi . In particular, if g′ �∈ Cg, then

0 = fg(g′) =
|Cg|
|G|

N∑
i=1

χρi(g)χρi(g
′),

which proves the first formula and hence the orthognality of the columns of the
character table. On the other hand, 1 = fg(g) = |Cg|

|G|
∑N
i=1 χρi(g)χρi(g), which

proves the second formula. 	


4 Projection Operators

We introduce the projection operators onto the isotypic components of the
decomposition of the vector space of any representation. Let (E, ρ) be a
representation of G and let ρ = ⊕Ni=1miρi be the decomposition of ρ into
isotypic components. The support of the isotypic component miρi, is miEi =
Ei ⊕ · · · ⊕Ei (mi terms). We denote this vector subspace of E by Vi. We shall
write

Vi = miEi =
mi⊕
j=1

Ei,j ,

where each Ei,j , 1 ≤ j ≤ mi, is equal to Ei. We thus have E = ⊕Ni=1 Vi.

Theorem 4.1. For each i, 1 ≤ i ≤ N , we set

Pi =
dim ρi
|G|

∑
g∈G

χi(g)ρ(g).

Then
(i) Pi is the projection of E onto Vi under the decomposition E = ⊕Ni=1 Vi.
(ii) PiPj = δijPi, for 1 ≤ i ≤ N , 1 ≤ j ≤ N .
(iii) If ρ is unitary, then Pi is Hermitian, that is, tPi = Pi.

Proof. (i) Let us choose i0, 1 ≤ i0 ≤ N , and show that Pi0
∣∣
Vi0

= IdVi0 , while if

i �= i0, then Pi0
∣∣
Vi

= 0. Let x =
∑N
i=1 xi, where xi ∈ Vi, and let xi =

∑mi
j=1 xi,j ,

where xi,j ∈ Ei,j , whence x =
∑N
i=1

∑mi
j=1 xi,j . Then

Pi0(x) =
dim ρi0
|G|

N∑
i=1

mi∑
j=1

∑
g∈G

χi0(g)ρ(g)xi,j

=
dim ρi0
|G|

N∑
i=1

mi∑
j=1

(∑
g∈G

χi0(g)ρi(g)

)
xi,j .

Because χi0 is a class function and ρi is irreducible, we may apply Lemma 3.5,
and we obtain

∑
g∈G

χi0(g)ρi(g) = ρi,χi0 =
|G|

dim ρi
(χi0 | χi)IdEi =

|G|
dim ρi0

δii0IdEi0 ,
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which finally leads to

Pi0(x) =
N∑
i=1

mi∑
j=1

δi0ixi,j =
mi0∑
j=1

xi0,j = xi0 .

(ii) The equations PiPj = 0 if i �= j and P 2
i = Pi follow from (i).

(iii) If ρ is unitary, then

|G|
dim ρi

t

Pi =
∑
g∈G

χi(g)tρ(g) =
∑
g∈G

χi(g)ρ(g−1)

=
∑
g∈G

χi(g−1)ρ(g) =
∑
g∈G

χi(g)ρi(g),

which is equal to |G|
dim ρi

Pi, which proves (iii). 	

The decomposition E = ⊕Ni=1 Vi is unique up to order. On the other hand,

the decomposition Vi = ⊕mij=1Ei,j is not always unique. For example, if ρ = IdE ,
then ρ can be written in an infinite number of ways as a direct sum of one-
dimensional representations.

5 Induced Representations

Induction is an operation that associates to a representation of a subgroup H
of a group G a representation of the group G itself.

5.1 Definition

Let G be a finite group and H a subgroup. Let (F, π) be a representation of H.
We define the vector space

E = {ϕ : G→ F | ∀h ∈ H,ϕ(gh) = π(h−1)ϕ(g)}, (5.1)

and a representation ρ = π↑G of G on E by

∀ϕ ∈ E, (ρ(g0)ϕ)(g) = ϕ(g−1
0 g), (5.2)

for every g0 ∈ G and for every g ∈ G. We can see that ρ(g0)ϕ lies in E because

(ρ(g0)ϕ)(gh) = ϕ(g−1
0 gh) = π(h−1)ϕ(g−1

0 g) = π(h−1) ((ρ(g0)ϕ)(g)),

and on the other hand, we see that g �→ ρ(g) is a group morphism of G into
GL(E).

Definition 5.1. The representation ρ = π↑G of G on E is called the represen-
tation of G induced from the representation π of the subgroup H of G.

For example, if H = {e} and if π is the trivial representation of H on C,
then the vector space E is equal to C[G] and the representation of G induced
from π is the regular representation of G.
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5.2 Geometric Interpretation

We can interpret the vector space E as the space of sections of a “vector bundle.”
We consider the Cartesian product G × F and we introduce the equivalence
relation

(g, x) ∼ (gh, π(h−1)x), ∀h ∈ H. (5.3)

Let G×π F be the quotient of G× F by this equivalence relation, and let

q : G×π F → G/H

be the projection that sends the equivalence class of (g, x) to gH. Note that
this is well defined, because if (g′, x′) ∼ (g, x), then g′ = gh, for some h ∈ H.
The inverse image under the projection q of any point in G/H is isomorphic to
the vector space F . We call G×π F a vector bundle over G/H with fiber F .

A section of the projection q : G ×π F → G/H (or of the vector bundle
G×πF ) is, by definition, a map ψ from G/H to G×πF such that q◦ψ = IdG/H .

Proposition 5.2. The support E of the induced representation π↑G is the vec-
tor space of sections of the projection q : G×π F → G/H.

Proof. To ϕ ∈ E and g ∈ G we associate the equivalence class of (g, ϕ(g)).
The result depends only on the class of g modulo H. In fact, if g′ = gh, with
h ∈ H, we obtain the equivalence class of (gh, ϕ(gh)), which is equal to the
equivalence class of (g, π(h)ϕ(gh)) = (g, ϕ(g)), since ϕ ∈ E. Thus one defines
a section of q : G ×π F → G/H. On the other hand, to any given section of q
we may associate an element of E by considering the second component of the
equivalence class associated to an element of G/H. Since this construction is
the inverse of the previous one, we have thus obtained an isomorphism of the
space E of the induced representation onto the vector space of sections of the
vector bundle G×π F . 	


The notion of an induced representation can be defined more generally than
just for finite groups, and has many applications in mathematics and physics.
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Exercises

Exercise 2.1 The symmetric group S3.
We write c for the cyclic permutation (123) and t for the transposition (23).

Show that {c, t} generates S3, and that tc = c2t, ct = tc2. Find the conjugacy
classes of the group S3.

Exercise 2.2 Representations of S3.

(a) Find the one-dimensional representations of the group S3.
(b) Let e1, e2, e3 be the canonical basis of C

3. For g ∈ S3, set σ(g)ei = eg(i).
Show that this defines a three-dimensional representation σ of S3 and
that V = {(z1, z2, z3) ∈ C

3 | z1 + z2 + z3 = 0} is invariant under σ. This
representation is called the permutation representation of the symmetric
group.

We denote by ρ the restriction to V of the representation σ.

(c) Show that there is a basis (u1, u2) of V such that ρ(t)u1 = u2, ρ(t)u2 = u1,
ρ(c)u1 = ju1, ρ(c)u2 = j2u2, where j2 + j + 1 = 0. Is the representation
ρ irreducible?

(d) Find the character table of S3.
(e) What is the geometric interpretation of S3 as a group of symmetries?

What is the geometric interpretation of the representation ρ?

Exercise 2.3 The symmetric group S4.
Find the conjugacy classes and character table of the symmetric group S4.

Exercise 2.4 The alternate group A4.
Find the character table of A4. Which representations of A4 are the restric-

tion of a representation of S4? Which representations of S4 have an irreducible
restriction to A4? Which have a reducible restriction?
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Exercise 2.5 Tensor products of vector spaces and of representations.
We denote the dual of a vector space E by E∗, and the duality pairing

by 〈 , 〉.
If E and F are finite-dimensional vector spaces over K (where K = R or C),

one can define the tensor product E ⊗ F as the vector space of bilinear maps
of E∗ × F ∗ into the scalar field K. For x ∈ E, y ∈ F , we define the element
x⊗ y ∈ E ⊗ F by

(x⊗ y)(ξ, η) = 〈ξ, x〉〈η, y〉,
for every ξ ∈ E∗, η ∈ F ∗.

(a) Let (e1, . . . , en) be a basis of E and let (f1, . . . , fp) be a basis of F . Show
that (ei ⊗ fj)1≤i≤n,1≤j≤p is a basis of E ⊗ F .

(b) An element of E⊗E is called a contravariant tensor (or simply a tensor)
of order 2 on E. Every contravariant tensor of order 2 on E can be written
T =

∑n
i,j=1 T

ijei ⊗ ej , where the T ij are scalars, called the components
of T in the basis (ei). What are the components of T after a change of
basis?

(c) We can associate to ξ⊗ y ∈ E∗⊗F the linear map u of E into F defined
by u(x) = 〈ξ, x〉y, for x ∈ E. Show that this defines an isomorphism of
E∗ ⊗ F onto the vector space of linear maps of E into F , L(E,F ).

(d) Show that if u : E → E and v : F → F are linear maps, then there is a
unique endomorphism u⊗v of E⊗F satisfying (u⊗v)(x⊗y) = u(x)⊗v(y)
for each x ∈ E, y ∈ F . In E ⊗ F , we choose the basis

(e1⊗f1, e1⊗f2, . . . , e1⊗fp, e2⊗f1, e2⊗ f2, . . . , e2⊗fp, . . . , en⊗f1, . . . , en⊗fp).

Write the matrix of u⊗ v, where u (respectively, v) is an endomorphism
of E (respectively, F ) with matrix A = (aij) (respectively, B = (bij)) in
the chosen bases.

(e) If (E1, ρ1) and (E2, ρ2) are representations of a group G, we set, for
g ∈ G,

(ρ1 ⊗ ρ2)(g) = ρ1(g) ⊗ ρ2(g).

Show that this defines a representation ρ1 ⊗ ρ2 of G on E1 ⊗ E2. What
can one say about the character of ρ1 ⊗ ρ2? If ρ1 and ρ2 are irreducible,
is the representation ρ1 ⊗ ρ2 irreducible?

Exercise 2.6 The dual representation.
Let (E, π) be a representation of a group G. For g ∈ G, ξ ∈ E∗, x ∈ E, we

set 〈 π∗(g)(ξ), x 〉 = 〈ξ, π(g−1)(x) 〉. (As in Excercise 2.5, E∗ is the dual of E,
and 〈 , 〉 is the duality pairing.)

(a) Show that this defines a representation π∗ of G on E∗. The representation
π∗ is called the dual (or contragredient) of π.

(b) Show that if (E, π) and (F, ρ) are representations of a group G, then
g · u = ρ(g) ◦ u ◦ π(g−1), for u ∈ L(E,F ) and g ∈ G, defines a represen-
tation of G on L(E,F ), equivalent to π∗ ⊗ ρ.
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Exercise 2.7 Exterior and symmetric powers.
Let E be a finite-dimensional vector space, with basis (e1, . . . , en). We

denote by
∧2

E (respectively, S2E) the vector subspace of E ⊗ E generated
by ei⊗ej−ej⊗ei, 1 ≤ i < j ≤ n (respectively, ei⊗ej + ej⊗ei, 1 ≤ i ≤ j ≤ n).
These definitions are independent of the choice of basis and E⊗E =

∧2
E⊕S2E.

The space
∧2

E is the exterior (or antisymmetric) power of degree 2 of E, and
the space S2E is the symmetric power of degree 2 of E.

(a) If (E, ρ) is a representation of a group G, then
∧2

E and S2E are
invariant under ρ ⊗ ρ. We denote the restriction of ρ ⊗ ρ to

∧2
E

(respectively, S2E) by
∧2

ρ (respectively, S2ρ). Suppose that G is
finite. Show that the characters of these representations satisfy, for each
g ∈ G,

χ∧2ρ(g) =
1
2

(
(χρ(g))2 − χρ(g2)

)
, χS2ρ(g) =

1
2

(
(χρ(g))2 + χρ(g2)

)
.

(b) If ρ is the two-dimensional irreducible representation of S3, find χ∧2ρ and
χS2ρ. Decompose ρ⊗ ρ into a direct sum of irreducible representations.

Exercise 2.8 Equivalence of the left and right regular representations.
Show that the left and right regular representations of a finite group are

equivalent.

Exercise 2.9 Representations of abelian and cyclic groups.

(a) Show that every irreducible representation of a finite group is
one-dimensional if and only if the group is abelian.

(b) Find all the inequivalent irreducible representations of the cyclic group
of order n.

Exercise 2.10 An application of the orthogonality relations.
Let ρi and ρj be irreducible representations of a finite group G. Let χi = χρi

and χj = χρj . Show that for every h ∈ G,

1
|G|

∑
g∈G

χi(g)χj(g−1h) =
1

dim ρi
χi(h)δij .

Exercise 2.11 Regular representation of S3.
Decompose the regular representation of S3 into a direct sum of irreducible

representations.
Find a basis of each one-dimensional invariant subspace and a projection

onto the support of the representation 2ρ, where ρ is the irreducible represen-
tation of dimension 2.

Exercise 2.12 Real and complexified representations.
Let E be a vector space over R, of dimension n. A morphism of a finite

group G into GL(E) is called a real representation of G, of (real) dimension n.
We consider EC = E ⊕ iE = E ⊗ C, a vector space over C, of complex

dimension n, called the complexification of E.
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(a) Show that every real representation of G on E can be extended uniquely
to a (complex) representation of G on EC. This representation is called
the complexification of the real representation.

(b) Let the symmetric group S3 act on R
2 by rotation through angles of

2kπ/3 and reflection. Show that the complexification of this representa-
tion is equivalent to the irreducible representation of S3 on C

2.
(c) Let the cyclic group of order 3 act on R

2 by rotations through angles of
2kπ/3. Is this real representation irreducible?

(d) Are all irreducible real representations of abelian groups one-dimensional?

Exercise 2.13 Representations of the dihedral group.

(a) Show that if H is an abelian subgroup of order p of a finite group G of
order n, then every irreducible representation of G is of dimension ≤ n/p.

(b) Conclude that for every n ≥ 3, every irreducible representation of the
dihedral group D(n) is one- or two-dimensional.

Exercise 2.14 Peter–Weyl theorem for finite groups.
Let ρ1, ρ2, . . . , ρN be unitary representations of a finite group G, chosen from

each equivalence class of irreducible representations.
Show that the matrix coefficients of the representations ρk, k = 1, . . . , N ,

in orthonormal bases form an orthogonal basis of L2(G). Conclude that every
function f ∈ L2(G) has a “Fourier series”

f =
N∑
k=1

dim ρk∑
i,j=1

dk(ρkij |f)ρkij ,

where the dk are integers.

Exercise 2.15 Representation of GL(2,C) on the polynomials of degree 2.
Let G be be a group and let ρ be a representation of G on V = C

n. Let
P (k)(V ) be the vector space of complex polynomials on V that are homogeneous
of degree k.

(a) For f ∈ P (k)(V ), we set ρ(k)(g)(f) = f ◦ ρ(g−1). Show that this defines
a representation ρ(k) of G on P (k)(V ).

(b) Compare ρ(1) and the dual representation of ρ.
(c) Suppose that G = GL(2,C), V = C

2, and ρ is the fundamental rep-
resentation. Let k = 2. To the polynomial f ∈ P (2)(C2) defined by

f(x, y) = ax2 + 2bxy + cy2 we associate the vector vf =
(
a
b
c

)
∈ C

3. Let

ρ̃ denote the representation of GL(2,C) on C
3 defined by ρ(2) and the

isomorphism above. Find the dual of ρ̃.
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Exercise 2.16 Convolution.
Let G be be a finite group and let C[G] be the group algebra, of G that is,

the vector space F(G) with multiplication defined by εgεg′ = εgg′ , for g and
g′ ∈ G, and extended by linearity.

(a) Show that the product of two functions f1, f2 ∈ C[G] is the convolution
product (f1 ∗ f2)(g) =

∑
h∈G f1(h)f2(h

−1g).
(b) Let ρ be a representation of G and suppose f ∈ C[G]. Set

ρf =
∑
g∈G f(g)ρ(g). Show that ρf1∗f2 = ρf1 ◦ ρf2 .

(c) Show that f ∈ C[G] is a class function if and only if f is in the center of
the algebra C[G] equipped with convolution (that is, f commutes in the
sense of convolution with every function on G).

Exercise 2.17 On the map f �→ ρf .
For every representation (E, ρ) of G and each function f on G, consider the

endomorphism ρf of E defined by

ρf =
∑
g∈G

f(g)ρ(g).

(a) Let R be the regular representation of G. Consider Rf (εg), for g ∈ G.
Show that Rf (εe) = f . Is the map f ∈ C[G] �→ Rf ∈ End(C[G])
injective?

(b) Let ρi and ρj be irreducible representations of G and let χi (respectively,
χj) be the character of ρi (respectively, ρj). Find ρf for ρ = ρj and
f = χi.

Exercise 2.18 Tensor products of representations.
Let ρ be the irreducible representation of dimension 2 of the symmetric

group S3. We set ρ = ρ⊗1, and by induction we define for every integer k ≥ 2,

ρ⊗k = ρ⊗(k−1) ⊗ ρ.

(a) For each positive integer k, decompose ρ⊗k into a direct sum of irre-
ducible representations.

(b) Let A3 ⊂ S3 denote the alternate group. For each positive integer k,
decompose the restriction of ρ⊗k to A3 into a direct sum of irreducible
representations.



Issai Schur, born in 1875 in Mohilev, Belorussia, professor in Bonn and
then in Berlin, member of the Prussian Academy of Sciences, lost his
university position in 1935. Forced to emigrate to Palestine, he died in
Tel Aviv in 1941. Schur is, with Frobenius, a founder of representation
theory.
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