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Rules 

0 ALGORITHMIC DIFFERENTIATION DOES NOT INCUR TRUNCATION 2 

ERRORS. 

1 DIFFERENCE QUOTIENTS MAY SOMETIMES BE USEFUL TOO. 4 

2 WHAT'S GOOD FOR FUNCTION VALUES IS GOOD FOR THEIR 20 

DERIVATIVES. 

3 THE JACOBIAN-VECTOR AND JACOBIAN TRANSPOSED VECTOR 51 

PRODUCTS CALCULATED IN THE FORWARD AND REVERSE MODE, 

RESPECTIVELY, CORRESPOND TO THE EXACT VALUES FOR AN 

EVALUATION PROCEDURE WHOSE ELEMENTAL^ ARE PERTURBED 

AT THE LEVEL OF THE MAGHINE PRECISION. 

4 PRODUCTS OF TRANSPOSE-JACOBIANS WITH VECTORS ARE 56 

C H E A P , B U T T H E I R T R A C E IS AS E X P E N S I V E AS T H E W H O L E J A ­

COBIAN. 

5 ADJOINING CAN BE PERFORMED LINE BY' LINE IRRESPECTIVE OF 69 

DEPENDENCIES AND ALIASING. 

6 SAVE ONLY THE VALUES OF POWERS OR EXPONENTIALS AND THE 71 

ARGUMENTS OF OTHER NONLINEAR ELEMENTALS. 

7 ADDITIVE TASKS WITH BOUNDED COMPLEXITY ON ELEMENTALS 7 9 

ARE ALSO BOUNDED ON COMPOSITE FUNCTIONS. 

8 OPERATION COUNTS AND RANDOM ACCESS MEMORY REQUIRE- 88 

MENTS FOR THEIR GRADIENTS ARE BOUNDED MULTIPLES OF 

THOSE FOR. THE FUNCTIONS. 

9 THE SEQUENTIAL ACCESS MEMORY REQUIREMENT OF THE BASIC 88 

REVERSE MODE IS PROPORTIONAL TO THE TEMPORAL COMPLEX­

ITY OF THE FUNCTION. 

10 NEVER GO BACK MORE THAN ONCE (AFTER ALL WEIGHT VEC- 92 

TORS ARE KNOWN). 

11 INCREMENTAL ADJOINTS OF LINEAR PROCEDURES ARE REFLEX- 98 

IVE IRRESPECTIVE OF ALLOCATION. 

12 Do AS MUCH AS POSSIBLE AT COMPILE-TIME. AS MUCH AS NEC- 139 

ESSARY AT RUNTIME. 

13 FACE-ELIMINATION ALLOWS LOWER OPERATIONS COUNTS THAN 207 

EDGE-ELIMINATION, WHICH IS IN TURN CHEAPER THAN VERTEX-

ELIMINATION. 



14 Do NOT USE GREEDY HEURISTICS BASED ON THE MARKOWITZ 218 

DEGREE FOR COMPUTING THE JACOBIANS OF FINAL STATES 

WITH RESPECT TO INITIAL STATES IN EVOLUTIONS. 

15 LOCAL JACOBIANS SHOULD BE PREACCUMULATED IF THEIR 222 

GENERIC RANK IS SIGNIFICANTLY SMALLER THAN THE NUMBER 

OF DERIVATIVE OR ADJOINT COMPONENTS BEING PROPAGATED 

GLOBALLY. 

16 T H E CALCULATION OF GRADIENTS BY' NONINCREMENTAL RE- 240 

VERSE MAKES THE CORRESPONDING COMPUTATIONAL GRAPH 

SYMMETRIC, A PROPERTY THAT SHOULD BE EXPLOITED AND 

MAINTAINED IN ACCUMULATING HESSIANS. 

17 T H E CHEAP GRADIENT RESULT DOES NOT YIELD CHEAP JACO- 247 

BIANS AS WELL. 

18 REVERSE BEATS FORWARD ONLY WHEN THE NONLINEAR WIDTH 255 

IS MUCH LARGER THAN THE NONLINEAR HEIGHT. 

19 JOINT REVERSALS SAVE MEMORY-, SPLIT REVERSALS SAVE OP- 270 

ERATIONS. 

20 DURING CALL TREE REVERSALS ALL TAPING OCCURS IN A LAST- 275 

IN-FIRST-OUT FASHION. 

21 T H E RELATIVE REVERSAL COST (r) GROWS LIKE THE CHAIN 286 

LENGTH (I) RAISED TO THE RECIPROCAL OF THE NUMBER OF 

CHECKPOINTS AVAILABLE (C). 

22 FORWARD DIFFERENTIATION CAN BE ENCAPSULATED IN TAYLOR 310 

ARITHMETIC. 

23 W H A T WORKS FOR FIRST DERIVATIVES IS FIT TO YIELD HIGHER 326 

DERIVATIVES BY EXTENSION TO TAYLOR ARITHMETIC. 

24 W H E N PROGRAM BRANCHES APPLY ON OPEN SUBDOMAINS, AL- 343 

GORITHMIC DIFFERENTIATION YIELDS USEFUL DERIVATIVES. 

25 FUNCTIONS GIVEN BY EVALUATION PROCEDURES ARE ALMOST 349 

EVERYWHERE REAL ANALYTIC OR STABLY UNDEFINED. 

26 FIXED POINT ITERATIONS CAN AND SHOULD BE ADJOINED BY 389 

RECORDING ONLY SINGLE STEPS. 


