
Contents

Preface to the second edition w

Preface » '
About the author w"
About the contributing authors xxi*
Acknowledgements x**'

PART ONE Motivation - components and markets 1

1 Introduction 3
1.1 Components are for composition 3
1.2 Components - custom-made versus standard software 4
1.3 Inevitability of components 6
1.4 The nature of software and déployable entities 8
1.5 Components are units of deployment 10
1.6 Lessons learned 12

2 Market versus technology 17
2.1 Creating a market 18
2.2 Fundamental properties of component technology 19
2.3 Market development 21

2.3.1 Strategic Focus (January 1995) 21
2.3.2 Ovum (1995) 22
2.3.3 IDC (May 1996) 22
2.3.4 Forrester Research (October 1996) 23
2.3.5 IDC (April 1999) 24
2.3.6 ComponentSource (2001) 25
2.3.7 Flashline (2001) 25

3 Standards 27
3.1 The utmost importance of (quasi) standards 27
3.2 Wiring standards are not enough 29
3.3 Too many competing standards are not useful 30
3.4 Where is software component technology today? 31
3.5 What's next? 32

vi Contents

PART TWO Foundation 33

4 What a component is and is not 35
4.1 Terms and concepts 35

4.1.1 Components 36
4.1.2 Objects 37
4.1.3 Components and objects 38
4.1.4 Modules 39
4.1.5 Whitebox versus blackbox abstractions and reuse 40
4.1.6 Interfaces 42
4.1.7 Explicit context dependencies 44
4.1.8 Component "weight" 45

4.2 Standardization and normalization 46
4.2.1 Horizontal versus vertical markets 47
4.2.2 Standard component worlds and normalization 47

5 Components, interfaces, and re-entrance 49
5.1 Components and interfaces 50

5.1.1 Direct and indirect interfaces 50

5.1.2 Versions 5 2

5.1.3 Interfaces as contracts 53
5.1.4 Contracts and extra-functional requirements 54
5.1.5 Undocumented "features" 54

5.2 What belongs to a contract? 55
5.2.1 Safety and progress 55
5.2.2 Extra-functional requirements 55
5.2.3 Specifying time and space requirements 56

5.3 Dress code - formal or informal? 57
5.4 Callbacks and contracts 58
5.5 Examples of callbacks and contracts 59

5.5.1 A directory service 60
5.5.2 A client of the directory sen/ice 61
5.5.3 Same client, next release 62
5.5.4 A broken contract 64

5.5.5 Prevention is better than cure 65
5.5.6 Proofing the directory service 66
5.5.7 Test functions in action 66

5.6 From callbacks to objects 67

5.7 From interobject consistency to object re-entrance 7

5.8 Self-interference and object re-entrance: a summary 7 7

5.9 Processes and multithreading 7 ^
5.10 Histories 7 9

5.11 Specification statements 81

6 Polymorphism 83
6.1 Substitutability - using one for another ^
6.2 Types, subtypes, and type checking 88
6.3 More on subtypes 9 0

6.4 Object languages and types 9 3

Contents vü

6.5 Types, interfaces, and components 93
6.6 The paradigm of independent extensibility 95
6.7 Safety by construction - viability of components 98

6.7.1 Module safety 99
6.7.2 Module safety and metaprogramming 99
6.7.3 Safety in a multilanguage environment 100

6.8 Safety, security, trust 101
6.9 Dimensions of independent extensibility 102

6.9.1 Bottleneck interfaces 103
6.9.2 Singleton configurations 104
6.9.3 Parallel, orthogonal, and recursive extensions 104

6.10 Evolution versus immutability of interfaces and contracts 105
6.10.1 Syntactic versus semantic contract changes 105
6.10.2 Contract expiry 106
6.10.3 Overriding law 106

6.11 Other forms of polymorphism 107

Object versus class composition or how to avoid inheritance 109
7.1 Inheritance - the soup of the day? 109
7.2 More flavors to the soup 111

7.2.1 Multiple inheritance 111
7.2.2 Mixins 113

7.3 Back to basic ingredients 115
7.4 The fragile base class problem 115

7.4.1 The syntactic fragile base class problem 116
7.4.2 The semantic fragile base class problem 116

7.5 Inheritance - more knots than meet the eye 117
7.6 Approaches to disciplined inheritance 122

7.6.1 The specialization interface 122
7.6.2 Typing the specialization interface 123
7.6.3 Behavioral specification of the specialization interface 125
7.6.4 Reuse and cooperation contracts 127
7.6.5 Representation invariants and method refinements 130
7.6.6 Disciplined inheritance to avoid fragile base class problems 131
7.6.7 Creating correct subclasses without seeing superclass code 131

7.7 From class to object composition 133
7.8 Forwarding versus delegation (or making object composition as problematical

as implementation inheritance) 135
7.9 A brief review of delegation and inheritance 138

Aspects of scale and granularity 139
8.1 Units of abstraction 140
8.2 Units of accounting ' 141
8.3 Units of analysis 141
8.4 Units of compilation 142
8.5 Units of delivery 143
8.6 Units of deployment 143
8.7 Units of dispute 143
8.8 Units of extension 145

viii Contents

8.9 Units of fault containment 146
8.10 Units of instantiation 146
8.11 Units of installation 147
8.12 Units of loading 147
8.13 Units of locality 149
8.14 Units of maintenance 150
8.15 Units of system management 150
8.16 Summary 150

9 Patterns, frameworks, architectures 151
9.1 Forms of design-level reuse 152

9.1.1 Sharing consistency - programming languages 152
9.1.2 Sharing concrete solution fragments - Ilibraries 153
9.1.3 Sharing individual contracts - interfaces 154
9.1.4 Sharing individual interaction fragments - messages and protocols 155
9.1.5 Sharing individual interaction architecture - patterns 156
9.1.6 Sharing architecture - frameworks 158
9.1.7 Sharing overall structure - system architecture 162
9.1.8 Systems of subsystems - framework hierarchies 164

9.2 Interoperability, legacies, and re-engineering 166

10 Programming - shades of gray 1 6 ^
10.1 Different programming methods for different programmers 169
10.2 Programming to a system I 7 2

10.3 Connection-oriented programming I 7 2

10.4 Connection-oriented programming - advanced concepts 175
10.5 Events and messages 181

10.5.1 Message syntax and schema - XML I s 3

10.5.2 Events versus calls I 8 5

10.5.3 Call syntax and protocol - SOAP i 8 6

10.6 Ordering of events - causality, races, and glitches I 8 7

10.7 Very late binding - dispatch interfaces and metaprogramming I 8 9

10.8 Degrees of freedom - sandboxing versus static safety I 9 2

10.9 Recording versus scripting I 9 2

11 What others say 1 9 5

11.1 Grady Booch (1987) 1 9 5

11.2 Oscar Nierstrasz and Dennis Tsichritzis (1992 and 1995) 1 9 6

11.3 Gio Wiederhold, Peter Wegner, and Stefano Ceri (1992) 1 9 6

11.4 Ivar Jacobson (1993) I 9 7

11.5 Meta Group (1994) I 9 7

11.6 Jed Harris (1995) I 9 7

11.7 Ovum Report on Distributed Objects (1995) 1 9 S

11.8 Robert Orfali, Dan Harkey, and Jen Edwards (1995, 1996) 1 9 8

11.9 Johannes Sametinger (1997) 1 9 9

11.10 UML 1.3 Standard (1999) 2 0 0

11.11 Desmond D'Souza and Alan Wills (1999) 2 0 0

11.12 Krzysztof Czarnecki and Ulrich Eisenecker (2000) 2 0 1

11.13 Peter Herzum and Oliver Sims (2000) 2 0 2

11.14 CBSE Handbook (2001) 2 0 3

Contents Ix

PART THREE Component models and platforms 205

12 Object and component "wiring" standards 207
12.1 Where it all came from 207
12.2 From procedures to objects 209
12.3 The fine print 210

12.3.1 Specification of interfaces and object references 210
12.3.2 Interface relationships and polymorphism 211
12.3.3 Naming and locating services 211
12.3.4 Compound documents 212

12.4 On the wire - the rise of XML 214
12.4.1 XML, XML Namespaces, XML Schema 215
12.4.2 XML support standards 220
12.4.3 XML document object and streaming models 221
12.4.4 SOAP 222
12.4.5 XML web services: WSDL, UDDI, WSFL, XLANG 224
12.4.6 Web services and programming models 229

12.5 Which way? 230

13 The OMG way: CORBA, CCM, OMA, and MDA 2 3 1
13.1 At the heart - the object request broker 231

13.1.1 From CORBA to 0MA 235
13.1.2 CORBA timeline 237
13.1.3 A bit of history - system object model (SOM) 238

13.2 Common object service specifications (CORBAservices) 239
13.2.1 Services supporting enterprise distributed computing 240
13.2.2 Services supporting architecture using fine-grained objects 242

13.3 CORBA Component Model 247
13.3.1 Portable object adapter 247
13.3.2 CCM components 248
13.3.3 CCM containers 252

13.4 CORBA-compliant implementations 252
13.4.1 BEA's WebLogic 253
13.4.2 IBM's WebSphere 254
13.4.3 lONA's Orbix E2A Application Server Platform 255
13.4.4 Borland's Enterprise Server 255
13.4.5 Non-for-profit implementations 256

13.5 CORBAfacilities 256
13.6 Application objects 257
13.7 CORBA, UML, XML, and MDA 258

13.7.1 Meta-object facility 259
13.7.2 Model-driven architecture (MDA) 259

14 The Sun way - Java, JavaBeans, EJB, and Java 2 editions 261
14.1 Overview and history of Java component technologies 261

14.1.1 Java versus Java 2 262
14.1.2 Runtime environment and reference implementations 263
14.1.3 Spectrum of editions - Micro, Standard, and Enterprise 265

14.2 Java, the language 270
14.2.1 Interfaces versus classes 273

x Contents

14.2.2 Exceptions and exception handling 278
14.2.3 Threads and synchronization 279
14.2.4 Garbage collection 282

14.3 JavaBeans 284
14.3.1 Events and connections 286
14.3.2 Properties 288
14.3.3 Introspection 289
14.3.4 JAR files - packaging of Java components 292

14.4 Basic Java services 293
14.4.1 Reflection 293
14.4.2 Object serialization 296
14.4.3 Java native interface 298
14.4.4 Java AWT and JFC/Swing 299
14.4.5* Advanced JavaBeans specifications 300

14.5 Component variety - applets, servlets, beans, and Enterprise beans 302
14.5.1 Java server pages (JSP) and servlets 304
14.5.2 Contextual composition - Enterprise JavaBeans (EJB) 308
14.5.3 Data-driven composition - message-driven beans in EJB 2.0 316

14.6 Advanced Java services 316
14.6.1 Distributed object model and RMI 317
14.6.2 Java and CORBA 318
14.6.3 Enterprise service interfaces 319
14.6.4 Java and XML 323

14.7 Interfaces versus classes in Java, revisited 323
14.8 JXTA and Jini 324

14.8.1 Jini - federations of Java objects 325
14.8.2 JXTA - peer-to-peer computing 326

14.9 Java and web services - SunONE 328

15 The Microsoft way: COM, OLE/ActiveX, COM+, and .NET CLR 329
15.1 The first fundamental wiring model - COM 330
15.2 COM object reuse 3 3 5

15.3 Interfaces and polymorphism 338
15.3.1 Categories 339
15.3.2 Interfaces and versioning 340

15.4 COM object creation and the COM library 3 4 0

15.5 Initializing objects, persistence, structured storage, monikers 342
15.6 From COM to distributed COM (DCOM) 3 4 3

15.7 Meta-information and automation 3 4 ^
15.8 Other COM services 346

15.8.1 Uniform data transfer 3 4 6

15.8.2 Dispatch interfaces (dispinterfaces) and dual interfaces 3 4 7

15.8.3 Outgoing interfaces and connectable objects 3

15.9 Compound documents and OLE 3 4

15.9.1 OLE containers and servers 3 ^
15.9.2 Controls - from Visual Basic via OLE to ActiveX 3 5 1

15.10 Contextual composition and services 3

15.10.1COM apartments - threading and synchronization 3 ^
15.10.2 Microsoft transaction server - contexts and activation 3 ^
15.10.3C0M+ - generalized contexts and data-driven composition 3 5 6

Contents xi

15.11 Take two - the .NET Framework 357
15.11.1The .NET big picture 358
15.11.2 Common language infrastructure 358
15.11.3 COM and platform interoperation 361
15.11.4Exemplary .NET language - C* 362
15.11.5Visual Studio .NET 366

15.12 Assemblies - the .NET components 366
15.13 Common language frameworks 368

15.13.lAppDomains, contexts, reflection, remoting 372
15.13.2 Windows Forms, data, management 375
15.13.3Web Forms, Active Server Pages (ASP) .NET 376
15.13.4XML and data 377
15.13.5 Enterprise services 378
15.13.6Web services with .NET 378

16 Some further technologies 381
16.1 Computer Associates' Advantage Plex 381
16.2 Hitachi Appgallery 382
16.3 Groove Transceiver 382

17 Strategic comparison 385
17.1 Shared attributes 385
17.2 Differences 386
17.3 Consequences for infrastructure vendors 390
17.4 Consequences for component vendors 395

18 Efforts on domain standards 397
18.1 OMG Domain Technology Committee 397

18.1.1 OMGBODTF 398
18.2 W3C 398
18.3 Business processes and documents 399

18.3.1 OASIS and ebXML 399
18.3.2 RosettaNet and PIPs 400
18.3.3 BizTalk.org 401

18.4 DMTF's CIM and WBEM 402
18.5 Java domain standard efforts 403
18.6 OLE for process control 404
18.7 Industry associations 404

18.7.1 Information technology industry groupings 404
18.7.2 Trade associations 405
18.7.3 User associations 406

19 Ongoing concerns 407
19.1 Domain standards 407
19.2 Rethinking the foundations of software engineering 408
19.3 But is it object-oriented? 408
19.4 Object mobility and mobile agents 411
19.5 Foundations - better contracts for better components 412

xii Contents

PART FOUR Components meet architecture and process 415

20 Component architecture 417
20.1 The roles of an architecture 417
20.2 Conceptualization - beyond objects? 418

20.3 Definitions of key terms 419

20.4 A tiered component architecture 421

20.5 Components and middleware 423

20.6 Components versus generative programming 424

21 Component frameworks 425
21.1 Contributions of contextual component frameworks 426

21.1.1 Foundation and roots 426
21.1.2 Component frameworks versus connectors 428

21.1.3 Component frameworks versus metaprogramming 430
21.1.4 Component frameworks versus aspect-oriented programming 430

21.2 Frameworks for contextual composition 4 3 1

21.2.1 C0M+ contexts 4 3 2

21.2.2 EJB containers 4 3 3

21.2.3 CCM containers 4 3 4

21.2.4 CLR contexts and channels 4 3 4

21.2.5 Tuple and object spaces 4 3 6

21.3 BlackBox component framework 4 3 7

21.3.1 Carrier-rider-mapper design pattern 4 3 8

21.3.2 Directory objects 4 4 0

21.3.3 Hierarchical model view separation 4 4 1

21.3.4 Container modes 4 4 4

21.3.5 Cascaded message multicasting services 4 4 6

21.3.6 Advanced applications based on compound documents 4 4

21.4 BlackBox and OLE 4 4 9

21.5 Portos - a hard realtime component framework and its IDE 4 ^

21.5.1 Structure of Portos 4 5 2

21.5.2 Realtime scheduler 4 5 3

21.5.3 Cross-development environment 4

22 Component development 4 5 7

22.1 The methodology - component-oriented programming 4 ^

22.1.1 Problems of asynchrony 4 5 8

22.1.2 Multithreading 4 5 8

22.1.3 Learning from circuit design 4 5 9

22.1.4 Living without implementation inheritance

22.1.5 Nutshell classes 4 6 1

22.1.6 Language support 4 6 2

22.1.7 Dynamic base objects with forwarding semantics
22.1.8 Caller encapsulation 4 6

22.2 The environment - selecting target frameworks

22.3 The tools - selecting programming languages

Contents xiii

23 Component distribution and acquisition 469
23.1 Building what sells - applications not components? 469
23.2 Product cataloging and description 470
23.3 Component location and selection 471
23.4 Superdistribution 472
23.5 Intermediaries 4 7 3

24 Component assembly 475
24.1 Systematic initialization and wiring 475
24.2 Visual component assembly 476
24.3 Compound documents to supersede visual assembly - 476
24.4 Components beyond graphical user interface environments 477
24.5 Managed and "self-guided" component assembly 478
24.6 End-user assembly 478
24.7 Component evolution 479

25 On the horizon 4 8 1
25.1 Advanced object composition 481

25.1.1 Delegation 481
25.1.2 Split objects 482
25.1.3 Environmental acquisition 483
25.1.4 Dynamic inheritance 483

25.2 New forms of object and component abstraction 483
25.2.1 Subject-oriented programming 483
25.2.2 Aspect-oriented programming 484
25.2.3 XML components 485

PART FIVE Markets and components 487

26 Gamut of markets 489
26.1 Components 489
26.2 Component platforms and infrastructure 490
26.3 Tools 490

26.3.1 Component design and implementation tools 490
26.3.2 Component testing tools 491
26.3.3 Component assembly tools 491
26.3.4 Component system diagnosis and maintenance 492

26.4 Professional services 492
26.4.1 Component system and framework architects 492
26.4.2 Component assembly consultants 493
26.4.3 Component configuration management 493
26.4.4 Component warehouses, marketing, and consulting 494
26.4.5 Component operators, web services, application service providers 494

27 New professions 495
27.1 Component system architect 495
27.2 Component framework architect 496
27.3 Component developer 497
27.4 Component assembler 497

xlv Contents

28 A component marketing paradox 499
28.1 Branding 500
28.2 Pay per use 500
28.3 Co-placement of advertisements 503
28.4 Leveraging on newly created markets 504
28.5 Leverage of integrative forces 505

Epilogue 507

Appendix A Java versus C* versus Component Pascal 509

Useful addresses and bibliography 515

Glossary 543

Index 571

Trademark notice
AppleScript, Cyberdog, HyperCard, Macintosh, Mac OS, NeXT, OpenStep, QuickTime and SANE
are trademarks of Apple Computer, Inc., registered in US and other countries.
Tuxedo and WebLogic are registered trademarks of BEA Systems, Inc.
Borland, the Borland Logo, Delphi ™, C++Builder™, Borland® VisiBroker® - RT are trademarks or
registered trademarks of Borland Software Corporation in the United States and other countries.
Jbed is a registered trademark of esmertec, inc.
CBToolkit, CBConnector, ComponentBroker, DS0M, PowerPC®, REXX, SOM®, VisualAge® and
WebSphere® are trademarks of International Business Machines in the United States, other coun-
tries, or both.
Orbix, OrbixCOMet Desktop and OrbixWeb are trademarks of I0NA.
LEGO® is a trademark of the LEGO Group.
Netscape and the Netscape N and Ship's Wheel logos are registered trademarks of Netscape
Communications Corporation in the US and other countries. Netscape Communicator and Netscape
Navigator are also trademarks of Netscape Communications Corporation and may be registered
outside the US.
Authenticode®, ActiveX®, Visual C#™, COM, C0M+, DCOM, OLE, EXCEL®, Internet Explorer,
Microsoft® Office, Word®, Microsoft®.NET1", PowerPoint®, Visual Basic®, Visual C++®, Visual
J+ +®, Visual Studio® and Windows® are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.
BlackBox, Component Pascal, Direct-To-COM and Safer OLE are trademarks of Oberon
Microsystems, Inc.
CORBA®, CWM™, HOP®, MOF™, OMA, OMG Interface Definition Language (IDL)™, UML™ and
XMI® are either registered trademarks or trademarks of the Object Management Group, Inc. in the
United States and/or other countries.
X/Open® and OSF/1® are registered trademarks of The Open Group in the US and other countries.
R/3® is a registered trademark of SAP AG in Germany and in several other countries all over the world.
Sun, Sun Microsystems, the Sun Logo, EJB™, Enterprise JavaBeans™ J2EE™ Java™, JavaBeans™,
Java Naming and Directory Interface™, Java Naming and Discovery Service Java™ Servlets,
JavaMail™, JavaServer Pages™, JDBC™, JNDI™, JSP™, Java""RMI, and Solaris™ are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
Texas Instruments Composer is a trademark of Texas Instruments.
W3C® and XML are trademarks or registered trademarks of the World Wide Web Consortium,
Massachusetts Institute of Technology.

