Contents

Chapter 1:	Signals and Systems	1
1.1	Signal Analysis	1
1.2	Complex Frequency	4
1.3	Network Analysis	7
1.4	Network Synthesis	14
Chapter 2:	Signals and Waveforms	20
2.1	General Characteristics of Signals	20
2.2	General Descriptions of Signals	24
2.3	The Step Function and Associated Waveforms	28
2.4	The Unit Impulse	33
Chapter 3:	The Frequency Domain: Fourier Analysis	46
3.1	Introduction	46
3.2	Orthogonal Functions	47
3.3	Approximation Using Orthogonal Functions	48
3.4	Fourier Series	50
3.5	Evaluation of Fourier Coefficients	52
3.6	Evaluation of Fourier Coefficients Using Unit	
	Impulses	58
3.7	The Fourier Integral	63
3.8	Properties of Fourier Transforms	67
	xiii	

Chapter 4:	Differential Equations	75
4.1	Introduction	75
4.2	Homogeneous Linear Differential Equations	76
4.3	Nonhomogeneous Equations	<i>82</i>
4.4	Step and Impulse Response	85
4.5	Integrodifferential Equations	91
4.6	Simultaneous Differential Equations	93
Chapter 5:	Network Analysis: I	100
5.1	Introduction	100
5.2	Network Elements	<i>103</i>
5.3	Initial and Final Conditions	106
5.4	Step and Impulse Response	111
5.5	Solution of Network Equations	114
5.6	Analysis of Transformers	122
Chapter 6:	The Laplace Transform	134
6.1	The Philosophy of Transform Methods	134
6.2	The Laplace Transform	135
6.3	Properties of Laplace Transforms	137
6.4	Uses of Laplace Transforms	144
6.5	Partial-Fraction Expansions	148
6.6	Poles and Zeros	155
6.7	Evaluation of Residues	162
6.8	The Initial and Final Value Theorems	165
Chapter 7:	Transform Methods in Network Analysis	175
7.1	The Transformed Circuit	175
7.2	Thévenin's and Norton's Theorems	180
7.3	The System Function	187
7.4	The Step and Impulse Responses	1 94
7.5	The Convolution Integral	197
7.6	The Duhamel Superposition Integral	201

Contents xv

Chapter 8:	Amplitude, Phase, and Delay	212
8.1	Amplitude and Phase Response	212
8.2	Bode Plots	221
8.3	Single-Tuned Circuits	229
8.4	Double-Tuned Circuits	238
8,5	On Poles and Zeros and Time Delay	245
Chapter 9:	Network Analysis: II	253
9.1	Network Functions	253
9.2	Relationships Between Two-Port Parameters	264
9.3	Transfer Functions Using Two-Port Parameters	266
9.4	Interconnection of Two-Ports	271
9.5	Incidental Dissipation	276
9.6	Analysis of Ladder Networks	279
Chapter 10:	Elements of Realizability Theory	290
10.1	Causality and Stability	290
10.2	Hurwitz Polynomials	294
10.3	Positive Real Functions	299
10.4	Elementary Synthesis Procedures	308
Chapter II:	Synthesis of One-Port Networks with Two Kinds of Elements	315
11.1	Properties of L-C Immittance Functions	315
11.2	Synthesis of L-C Driving-Point Immittances	319
11.3	Properties of R-C Driving-Point Impedances	325
11.4	Synthesis of R-C Impedances or R-L Admittances	329
11.5	Properties of R-L Impedances and R-C Admittances	331
11.6	Synthesis of Certain <i>R-L-C</i> Functions	333

Chapter 12:	Elements of Transfer Function Synthesis	341
12.1	Properties of Transfer Functions	341
12.2	Zeros of Transmission	345
12.3	Synthesis of Y_{21} and Z_{21} with a 1- Ω Termination	347
12.4	Synthesis of Constant-Resistance Networks	352
Chapter 13:	Topics in Filter Design	365
13.1	The Filter Design Problem	365
13.2	The Approximation Problem in Network Theory	365
13.3	The Maximally Flat Low-Pass Filter Approximation	368
13.4	Other Low-Pass Filter Approximations	373
13.5	Transient Response of Low-Pass Filters	388
13.6	A Method to Reduce Overshoot in Filters	<i>392</i>
13.7	A Maximally Flat Delay and Controllable Magnitude	
	Approximation	395
13.8	Synthesis of Low-Pass Filters	<i>39</i> 7
13.9	Magnitude and Frequency Normalization	402
13.10	Frequency Transformations	404
Chapter 14:	The Scattering Matrix	413
14.1	Incident and Reflected Power Flow	413
14.2	The Scattering Parameters for a One-Port Network	415
14.3	The Scattering Matrix for a Two-Port Network	419
14.4	Properties of the Scattering Matrix	426
14.5	Insertion Loss	<i>42</i> 9
14.6	Darlington's Insertion Loss Filter Synthesis	431
Chapter 15:	Computer Techniques in Circuit Analysis	438
15.1	The Uses of Digital Computers in Circuit Analysis	438
15.2	Amplitude and Phase Subroutine	450
15.3	A Fortran Program for the Analysis of Ladder Networks	453
15.4	Programs that Aid in Darlington Filter Synthesis	457

Appendix A:	Introduction to Matrix Algebra	461
A.1	Fundamental Operations	461
A.2	Elementary Concepts	462
A.3	Operations on Matrices	464
A.4	Solutions of Linear Equations	468
A.5	References on Matrix Algebra	469
Appendix B:	Generalized Functions and the Unit Impulse	470
B.1	Generalized Functions	470
B.2	Properties of the Unit Impulse	476
Appendix C:	Elements of Complex Variables	481
C. 1	Elementary Definitions and Operations	481
C.2	Analysis	483
C.3	Singularities and Residues	486
C.4	Contour Integration	487
Appendix D:	Proofs of Some Theorems on Positive Real Functions	490
Appendix E:	An Aid to the Improvement of Filter Approximation	493
E.1	Introduction	493
E.2	Constant Logarithmic Gain Contours	494
E.3	Constant Phase Contours	495
E.4	Contour Drawings	496
E.5	Correction Procedure	498
E.6	Correction Network Design	502
E.7	Conclusion	504
Bibliography		505
Name Index		509