Contents

Ack	now	ledgem	ents	page ix
Inti	odu	ction		1
1	Me	chanisr	ns and Mechanism Design	14
	1.0	Introd	luction	14
	1.1	Mecha	anisms and Design	18
	1.2	Envire	onments and Goal Functions	25
	1.3	Mecha	anisms: Message Exchange Processes and	
		Game	Forms	26
	1.4	Initial	Dispersion of Information and Privacy	
		Preser	vation	29
	1.5	Mecha	anism Design	30
	1.6	Mecha	anism Design Illustrated in a Walrasian Example	31
		1.6.1	An Edgeworth Box Economy	31
		1.6.2	The Walrasian Goal Function	32
		1.6.3	Mechanisms: The Competitive Mechanism	35
		1.6.4	Competitive Equilibrium Conditions	35
		1.6.5	The Competitive Mechanism Is a Mechanism	36
		1.6.6	The Competitive Mechanism Illustrates Some	
			Concepts Used in Mechanism Design	37
		1.6.7	Privacy Preservation in the Competitive	
			Mechanism	38
		1.6.8	Deriving a Mechanism (Not the Competitive	
			Mechanism) from a Covering for the Walrasian	
			Goal Function	40
		1.6.9	Informational Properties of the Two	
			Mechanisms	42
		1.6.10	The Rectangles Method Applied to the Walrasian	
			Goal Function – Informal	44

	1.7	Introductory Discussion of Informational Efficiency	
		Concepts	46
	1.8	A National Forest	50
2	From Goals to Means: Constructing Mechanisms		
	2.1	Phase One: Mechanism Construction	74
		2.1.1 Two Examples	74
		2.1.2 Constructing a "Universal" Method of Designing	
		Informationally Efficient Mechanisms Realizing a	
		Given Goal Function	83
		2.1.3 The Method of Rectangles (RM)	86
	2.2	Phase 2: Constructing Decentralized Mechanisms,	
		from Parameter Indexed Product Structures: Transition	
		to Message-Indexed Product Structures	101
		2.2.0 Introduction	101
		2.2.1 Basic Concepts	102
		2.2.2 The L-dot Example	104
		2.2.3 More Examples	105
		2.2.4 General Issues in Mechanism Construction	109
		2.2.5 Mechanism Construction for L-dot	114
	2.3	Smooth Transversal Construction for Partitions	
		by the "Flagpole" Method	117
		2.3.1 Flagpoles: General Principles	117
		2.3.2 Flagpoles: Example 2 (Augmented Inner Product)	120
		2.3.3 Flagpoles: A Walrasian Example	125
		2.3.4 Unique Solvability Implies Partition	129
	2.4	Analytic Aspects	130
		2.4.1 Phase Two via Condensation. General Principles	131
		2.4.2 The Mount–Reiter Condensation Theorem	
		(Sufficiency)	136
		2.4.3 Walrasian Mechanism Construction	140
		2.4.4 Phase Two of Mechanism Design via Condensation	
		for the Augmented Two-Dimensional Inner	
		Product	149
	2.5	Overlaps	154
		2.5.0 Constructing a Mechanism When the	
		Parameter-Indexed Product Structure Is Not a	
		Partition: An Example	154
	Appendix		
	2.6 Informational Efficiency		
		2.6.1 Main Results	165
		2.6.2 The Maximality of Reflexive RM-Coverings	166
		2.6.3 Informational Efficiency: General Considerations	168

Contents

	2.6.4 A Comment on Informational Efficiency Concepts	171	
	Mechanism	170	
	266 Two rPM Coverings of Different Informational Size	1/2	
	for the Same Coal Function: An Example	175	
	Appendix	175	
	Appendix	100	
3	Designing Informationally Efficient Mechanisms Using the		
	Language of Sets		
	3.1 Introduction	182	
	3.2 Mechanism Design	183	
	3.2.1 Decentralization	184	
	3.3 Mechanisms and Coverings	186	
	3.4 A Systematic Process for Constructing an rRM Covering	188	
	3.4.1 OrRM: An Algorithm for Constructing an rRM		
	Covering of a Finite Parameter Space That Is Minimal		
	in the Class of Rectangular, F-Contour Contained		
	Coverings	197	
	3.5 Constructing a Mechanism from a Covering by the		
	Transversals Method (TM)	220	
	3.6 Coverings and Partitions	230	
	3.7 Informational Efficiency	244	
	3.7.1 Introduction	244	
	3.7.2 Observational Efficiency	245	
	3.7.3 The Maximality of rRM-Coverings	246	
	3.7.4 Informational Size and Coarseness	250	
	3.8 Section 1.8 Revisited: A Graphical Presentation	263	
	3.9 Strategic Behavior	274	
	3.9.1 Dominant Strategy Implementation	274	
	3.9.2 Designing Informationally Efficient		
	Nash-Implementing Mechanisms	279	
	Appendix: Characterizations of Partitions	290	
4	Revelation Mechanisms	296	
•	4.1 Introduction	296	
	4.1.1 Computational Complexity of Functions	299	
	4.1.2 Separator Sets and Ouotients	303	
	4.1.3 Algebraic Conditions	306	
	4 1 4 Privacy-Preserving Mechanisms	307	
	4.2 Initial Set-Theoretic Constructions	310	
	4.2.1 Encoded and Essential Revelation Mechanisms	310	
	4.2.2. <i>F</i> -Fourivalence and Encoded Revelation		
	Mechanisms	310	
	TATE ATTRACTOR	0.0	

4.3	The Topological Case	313
	4.3.1 Differential Separability	315
	4.3.2 The Number of Variables on which F Really	
	Depends	316
	4.3.3 Rank Conditions and Construction of an Essential	
	Revelation Mechanism for F	317
4.4	Proofs and Examples	322
	4.4.1 Leontief and Abelson Theorem	322
	4.4.2 Leontief's Theorem	324
	4.4.3 An Example of the Coordinate Construction	329
	4.4.4 Proof of Theorem 4.4.6	331
References		335
Index		