Contents

List of Tables page xxi
List of Illustrations xxiv
Preface xxix
Part I: Networks, Relations, and Structure 1
1 Social Network Analysis in the Social and Behavioral Sciences 3
1.1 The Social Networks Perspective 4
1.2 Historical and Theoretical Foundations 10
1.2.1 Empirical Motivations 11
1.2.2 Theoretical Motivations 13
1.2.3 Mathematical Motivations 15
1.2.4 In Summary 16
1.3 Fundamental Concepts in Network Analysis 17
1.4 Distinctive Features 21
1.5 Organization of the Book and How to Read It 22
1.5.1 Complexity 23
1.5.2 Descriptive and Statistical Methods 23
1.5.3 Theory Driven Methods 24
1.5.4 Chronology 24
1.5.5 Levels of Analysis 25
1.5.6 Chapter Prerequisites 26
1.6 Summary 27
2 Social Network Data 28
2.1 Introduction: What Are Network Data? 28
2.1.1 Structural and Composition Variables 29
2.1.2 Modes 29
2.1.3 Affiliation Variables 30
2.2 Boundary Specification and Sampling 30
2.2.1 What Is Your Population? 31
2.2.2 Sampling 33
2.3 Types of Networks 35
2.3.1 One-Mode Networks 36
2.3.2 Two-Mode Networks 39
2.3.3 Ego-centered and Special Dyadic Networks 41
2.4 Network Data, Measurement and Collection 43
2.4.1 Measurement 43
2.4.2 Collection 45
2.4.3 Longitudinal Data Collection 55
2.4.4 Measurement Validity, Reliability, Accuracy, Error 56
2.5 Data Sets Found in These Pages 59
2.5.1 Krackhardt's High-tech Managers 60
2.5.2 Padgett's Florentine Families 61
2.5.3 Freeman's EIES Network 62
2.5.4 Countries Trade Data 64
2.5.5 Galaskiewicz's CEOs and Clubs Network 65
2.5.6 Other Data 66
Part II: Mathematical Representations of Social Networks 67
3 Notation for Social Network Data 69
3.1 Graph Theoretic Notation 71
3.1.1 A Single Relation 71
3.1.2 OMultiple Relations 73
3.1.3 Summary 75
3.2 Sociometric Notation 77
3.2.1 Single Relation 79
3.2.2 Multiple Relations 81
3.2.3 Summary 83
3.3 OAlgebraic Notation 84
3.4 OTwo Sets of Actors 85
3.4.1 Q Different Types of Pairs 86
3.4.2 OSociometric Notation 87
3.5 Putting It All Together 89
4 Graphs and Matrices 92
4.1 Why Graphs? 93
4.2 Graphs 94
4.2.1 Subgraphs, Dyads, and Triads 97
4.2.2 Nodal Degree 100
4.2.3 Density of Graphs and Subgraphs 101
4.2.4 Example: Padgett's Florentine Families 103
4.2.5 Walks, Trails, and Paths 105
4.2.6 Connected Graphs and Components 109
4.2.7 Geodesics, Distance, and Diameter 110
4.2.8 Connectivity of Graphs 112
4.2.9 Isomorphic Graphs and Subgraphs 117
4.2.10 OSpecial Kinds of Graphs 119
4.3 Directed Graphs 121
4.3.1 Subgraphs - Dyads 124
4.3.2 Nodal Indegree and Outdegree 125
4.3.3 Density of a Directed Graph 129
4.3.4 An Example 129
4.3.5 Directed Walks, Paths, Semipaths 129
4.3.6 Reachability and Connectivity in Digraphs 132
4.3.7 Geodesics, Distance and Diameter 134
4.3.8 OSpecial Kinds of Directed Graphs 134
4.3.9 Summary 136
4.4 Signed Graphs and Signed Directed Graphs 136
4.4.1 Signed Graph 137
4.4.2 Signed Directed Graphs 138
4.5 Valued Graphs and Valued Directed Graphs 140
4.5.1 Nodes and Dyads 142
4.5.2 Density in a Valued Graph 143
4.5.3 OPaths in Valued Graphs 143
4.6 Multigraphs 145
4.7 QHypergraphs 146
4.8 Relations 148
4.8.1 Definition 148
4.8.2 Properties of Relations 149
4.9 Matrices 150
4.9.1 Matrices for Graphs 150
4.9.2 Matrices for Digraphs 152
4.9.3 Matrices for Valued Graphs 153
4.9.4 Matrices for Two-Mode Networks 154
4.9.5 OMatrices for Hypergraphs 154
4.9.6 Basic Matrix Operations 154
4.9.7 Computing Simple Network Properties 159
4.9.8 Summary 164
4.10 Properties 164
4.10.1 Reflexivity 164
4.10.2 Symmetry 165
4.10.3 Transitivity 165
4.11 Summary 165
Part III: Structural and Locational Properties 167
5 Centrality and Prestige 169
5.1 Prominence: Centrality and Prestige 172
5.1.1 Actor Centrality 173
5.1.2 Actor Prestige 174
5.1.3 Group Centralization and Group Prestige 175
5.2 Nondirectional Relations 177
5.2.1 Degree Centrality 178
5.2.2 Closeness Centrality 183
5.2.3 Betweenness Centrality 188
5.2.4 囚Information Centrality 192
5.3 Directional Relations 198
5.3.1 Centrality 199
5.3.2 Prestige 202
5.3.3 A Different Example 210
5.4 Comparisons and Extensions 215
6 Structural Balance and Transitivity 220
6.1 Structural Balance 222
6.1.1 Signed Nondirectional Relations 223
6.1.2 Signed Directional Relations 228
6.1.3 OChecking for Balance 230
6.1.4 An Index for Balance 232
6.1.5 Summary 232
6.2 Clusterability 233
6.2.1 The Clustering Theorems 235
6.2.2 Summary 238
6.3 Generalizations of Clusterability 239
6.3.1 Empirical Evidence 239
6.3.2 ORanked Clusterability 240
6.3.3 Summary 242
6.4 Transitivity 243
6.5 Conclusion 247
7 Cohesive Subgroups 249
7.1 Background 250
7.1.1 Social Group and Subgroup 250
7.1.2 Notation 252
7.2 Subgroups Based on Complete Mutuality 253
7.2.1 Definition of a Clique 254
7.2.2 An Example 254
7.2.3 Considerations 256
7.3 Reachability and Diameter 257
7.3.1 n-cliques 258
7.3.2 An Example 259
7.3.3 Considerations 260
7.3.4 n-clans and n-clubs 260
7.3.5 Summary 262
7.4 Subgroups Based on Nodal Degree 263
7.4.1 k-plexes 265
7.4.2 k-cores 266
7.5 Comparing Within to Outside Subgroup Ties 267
7.5.1 LS Sets 268
7.5.2 Lambda Sets 269
7.6 Measures of Subgroup Cohesion 270
7.7 Directional Relations 273
7.7.1 Cliques Based on Reciprocated Ties 273
7.7.2 Connectivity in Directional Relations 274
$7.7 .3 n$-cliques in Directional Relations 275
7.8 Valued Relations 277
7.8.1 Cliques, n-cliques, and k-plexes 278
7.8.2 Other Approaches for Valued Relations 282
7.9 Interpretation of Cohesive Subgroups 283
7.10 Other Approaches 284
7.10.1 Matrix Permutation Approaches 284
7.10.2 Multidimensional Scaling 287
7.10.3 OFactor Analysis 290
7.11 Summary 290
8 Affiliations and Overlapping Subgroups 291
8.1 Affiliation Networks 291
8.2 Background 292
8.2.1 Theory 292
8.2.2 Concepts 294
8.2.3 Applications and Rationale 295
8.3 Representing Affiliation Networks 298
8.3.1 The Affiliation Network Matrix 298
8.3.2 Bipartite Graph 299
8.3.3 Hypergraph 303
8.3.4 OSimplices and Simplicial Complexes 306
8.3.5 Summary 306
8.3.6 An example: Galaskiewicz's CEOs and Clubs 307
8.4 One-mode Networks 307
8.4.1 Definition 307
8.4.2 Examples 309
8.5 Properties of Affiliation Networks 312
8.5.1 Properties of Actors and Events 312
8.5.2 Properties of One-mode Networks 314
8.5.3 Taking Account of Subgroup Size 322
8.5.4 Interpretation 324
8.6 \otimes Analysis of Actors and Events 326
8.6.1 囚Galois Lattices 326
8.6.2 囚Correspondence Analysis 334
8.7 Summary 342
Part IV: Roles and Positions 345
9 Structural Equivalence 347
9.1 Background 348
9.1.1 Social Roles and Positions 348
9.1.2 An Overview of Positional and Role Analysis 351
9.1.3 A Brief History 354
9.2 Definition of Structural Equivalence 356
9.2.1 Definition 356
9.2.2 An Example 357
9.2.3 Some Issues in Defining Structural Equivalence 359
9.3 Positional Analysis 361
9.3.1 Simplification of Multirelational Networks 361
9.3.2 Tasks in a Positional Analysis 363
9.4 Measuring Structural Equivalence 366
9.4.1 Euclidean Distance as a Measure of Structural Equivalence 367
9.4.2 Correlation as a Measure of Structural Equivalence 368
9.4.3 Some Considerations in Measuring Structural Equivalence 370
9.5 Representation of Network Positions 375
9.5.1 Partitioning Actors 375
9.5.2 Spatial Representations of Actor Equivalences 385
9.5.3 Ties Between and Within Positions 388
9.6 Summary 391
10 Blockmodels 394
10.1 Definition 395
10.2 Building Blocks 397
10.2.1 Perfect Fit (Fat Fit) 398
10.2.2 Zeroblock (Lean Fit) Criterion 399
10.2.3 Oneblock Criterion 400
10.2.4 \propto Density Criterion 400
10.2.5 Comparison of Criteria 401
10.2.6 Examples 401
10.2.7 Valued Relations 406
10.3 Interpretation 408
10.3.1 Actor Attributes 408
10.3.2 Describing Individual Positions 411
10.3.3 Image Matrices 417
10.4 Summary 423
11 Relational Algebras 425
11.1 Background 426
11.2 Notation and Algebraic Operations 428
11.2.1 Composition and Compound Relations 429
11.2.2 Properties of Composition and Compound Relations 432
11.3 Multiplication Tables for Relations 433
11.3.1 Multiplication Tables and Relational Structures 435
11.3.2 An Example 439
11.4 Simplification of Role Tables 442
11.4.1 Simplification by Comparing Images 443
11.4.2 \otimes Homomorphic Reduction 445
$11.5 \otimes$ Comparing Role Structures 449
11.5.1 Joint Homomorphic Reduction 451
11.5.2 The Common Structure Semigroup 452
11.5.3 An Example 453
11.5.4 Measuring the Similarity of Role Structures 457
11.6 Summary 460
12 Network Positions and Roles 461
12.1 Background 462
12.1.1 Theoretical Definitions of Roles and Positions 462
12.1.2 Levels of Role Analysis in Social Networks 464
12.1.3 Equivalences in Networks 466
12.2 Structural Equivalence, Revisited 468
12.3 Automorphic and Isomorphic Equivalence 469
12.3.1 Definition 470
12.3.2 Example 471
12.3.3 Measuring Automorphic Equivalence 472
12.4 Regular Equivalence 473
12.4.1 Definition of Regular Equivalence 474
12.4.2 Regular Equivalence for Nondirectional Relations 475
12.4.3 Regular Equivalence Blockmodels 476
12.4.4 OA Measure of Regular Equivalence 479
12.4.5 An Example 481
12.5 "Types" of Ties 483
12.5.1 An Example 485
12.6 Local Role Equivalence 487
12.6.1 Measuring Local Role Dissimilarity 488
12.6.2 Examples 491
12.7 \&Ego Algebras 494
12.7.1 Definition of Ego Algebras 496
12.7.2 Equivalence of Ego Algebras 497
12.7.3 Measuring Ego Algebra Similarity 497
12.7.4 Examples 499
12.8 Discussion 502
Contents xvii
Part V: Dyadic and Triadic Methods 503
13 Dyads 505
13.1 An Overview 506
13.2 An Example and Some Definitions 508
13.3 Dyads 510
13.3.1 The Dyad Census 512
13.3.2 The Example and Its Dyad Census 513
13.3.3 An Index for Mutuality 514
13.3.4 囚A Second Index for Mutuality 518
13.3.5 OSubgraph Analysis, in General 520
13.4 Simple Distributions 522
13.4.1 The Uniform Distribution - A Review 524
13.4.2 Simple Distributions on Digraphs 526
13.5 Statistical Analysis of the Number of Arcs 528
13.5.1 Testing 529
13.5.2 Estimation 533
13.6 ©Conditional Uniform Distributions 535
13.6.1 Uniform Distribution, Conditional on the Number of Arcs 536
13.6.2 Uniform Distribution, Conditional on the Outdegrees 537
13.7 Statistical Analysis of the Number of Mutuals 539
13.7.1 Estimation 540
13.7.2 Testing 542
13.7.3 Examples 543
13.8 OOther Conditional Uniform Distributions 544
13.8.1 Uniform Distribution, Conditional on the Indegrees 545
13.8.2 The $U \mid M A N$ Distribution 547
13.8.3 More Complex Distributions 550
13.9 Other Research 552
13.10 Conclusion 555
14 Triads 556
14.1 Random Models and Substantive Hypotheses 558
14.2 Triads 559
14.2.1 The Triad Census 564
14.2.2 The Example and Its Triad Census 574
14.3 Distribution of a Triad Census 575
14.3.1 ©Mean and Variance of a k-subgraph Census 576
14.3.2 Mean and Variance of a Triad Census 579
14.3.3 Return to the Example 581
14.3.4 Mean and Variance of Linear Combinations of a Triad Census 582
14.3.5 A Brief Review 584
14.4 Testing Structural Hypotheses 585
14.4.1 Configurations 585
14.4.2 From Configurations to Weighting Vectors 590
14.4.3 From Weighting Vectors to Test Statistics 592
14.4.4 An Example 595
14.4.5 Another Example - Testing for Transitivity 596
14.5 Generalizations and Conclusions 598
14.6 Summary 601
Part VI: Statistical Dyadic Interaction Models 603
15 Statistical Analysis of Single Relational Networks 605
15.1 Single Directional Relations 607
15.1.1 The \mathbf{Y}-array 608
15.1.2 Modeling the \mathbf{Y}-array 612
15.1.3 Parameters 619
15.1.4 囚Is p_{1} a Random Directed Graph Distribution? 633
15.1.5 Summary 634
15.2 Attribute Variables 635
15.2.1 Introduction 636
15.2.2 The W-array 637
15.2.3 The Basic Model with Attribute Variables 640
15.2.4 Examples: Using Attribute Variables 646
15.3 Related Models for Further Aggregated Data 649
15.3.1 Strict Relational Analysis - The \mathbf{V}-array 651
15.3.2 Ordinal Relational Data 654
15.4 ONondirectional Relations 656
15.4.1 A Model 656
15.4.2 An Example 657
$15.5 \otimes$ Recent Generalizations of p_{1} 658
$15.6 \bigotimes$ Single Relations and Two Sets of Actors 662
15.6.1 Introduction 662
15.6.2 The Basic Model 663
15.6.3 Aggregating Dyads for Two-mode Networks 664
Contents xix
15.7 Computing for Log-linear Models 665
15.7.1 Computing Packages 666
15.7.2 From Printouts to Parameters 671
15.8 Summary 673
16 Stochastic Blockmodels and Goodness-of-Fit Indices 675
16.1 Evaluating Blockmodels 678
16.1.1 Goodness-of-Fit Statistics for Blockmodels 679
16.1.2 Structurally Based Blockmodels and Permutation Tests 688
16.1.3 An Example 689
16.2 Stochastic Blockmodels 692
16.2.1 Definition of a Stochastic Blockmodel 694
16.2.2 Definition of Stochastic Equivalence 696
16.2.3 Application to Special Probability Functions 697
16.2.4 Goodness-of-Fit Indices for Stochastic Blockmodels 703
16.2.5 OStochastic a posteriori Blockmodels 706
16.2.6 Measures of Stochastic Equivalence 708
16.2.7 Stochastic Blockmodel Representations 709
16.2.8 The Example Continued 712
16.3 Summary: Generalizations and Extensions 719
16.3.1 Statistical Analysis of Multiple Relational Networks 719
16.3.2 Statistical Analysis of Longitudinal Relations 721
Part VII: Epilogue 725
17 Future Directions 727
17.1 Statistical Models 727
17.2 Generalizing to New Kinds of Data 729
17.2.1 Multiple Relations 730
17.2.2 Dynamic and Longitudinal Network Models 730
17.2.3 Ego-centered Networks 731
17.3 Data Collection 731
17.4 Sampling 732
17.5 General Propositions about Structure 732
17.6 Computer Technology 733
17.7 Networks and Standard Social and Behavioral Science 733
Appendix A Computer Programs 735
Appendix B Data 738
References 756
Name Index 802
Subject Index 811
List of Notation 819

List of Tables

3.1 Sociomatrices for the six actors and three relations of Figure 3.2 82
3.2 The sociomatrix for the relation "is a student of" defined for heterogeneous pairs from \mathscr{N} and \mathscr{M} 88
4.1 Nodal degree and density for friendships among Krack- hardt's high-tech managers 130
4.2 Example of a sociomatrix: "lives near" relation for six children 151
4.3 Example of an incidence matrix: "lives near" relation for six children 152
4.4 Example of a sociomatrix for a directed graph: friendship at the beginning of the year for six children 153
4.5 Example of matrix permutation 156
4.6 Transpose of a sociomatrix for a directed relation: friendship at the beginning of the year for six children 157
4.7 Powers of a sociomatrix for a directed graph 162
5.1 Centrality indices for Padgett's Florentine families 183
5.2 Centrality for the countries trade network 211
5.3 Prestige indices for the countries trade network 213
6.1 Powers of a sociomatrix of a signed graph, to demonstrate cycle signs, and hence, balance 231
8.1 Cliques in the actor co-membership relation for Galaskie- wicz's CEOs and clubs network 321
8.2 Cliques in the event overlap relation for Galaskiewicz's CEOs and clubs network 321
8.3 Correspondence analysis scores for CEOs and clubs 341
10.1 Mean age and tenure of actors in positions for Krack- hardt's high-tech managers (standard deviations in parentheses) 410
10.2 Means of variables within positions for countries trade example 412
10.3 Typology of positions (adapted from Burt (1976)) 414
10.4 Typology of positions for Krackhardt's high-tech managers 416
14.1 Some sociomatrices for three triad isomorphism classes 564
14.2 Weighting vectors for statistics and hypothesis concerning the triad census 573
14.3 Triadic analysis of Krackhardt's friendship relation 582
14.4 Covariance matrix for triadic analysis of Krackhardt's friendship relation 583
14.5 Configuration types for Mazur's proposition 593
15.1 Sociomatrix for the second-grade children 610
15.2 y for the second-grade children 611
15.3 Constraints on the $\left\{\alpha_{i(k)}\right\}$ parameters in model (15.3) 617
$15.4 p_{1}$ parameter estimates for the second-graders 618
15.5 y fitted values for p_{1} fit to the second-grade children 623
$15.6 p_{1}$ parameters, models, and associated margins 628
15.7 Tests of significance for parameters in model (15.3) 630
15.8 Goodness-of-fit statistics for the fabricated network 631
15.9 Goodness-of-fit statistics for Krackhardt's network 631
15.10 Parameter estimates for Krackhardt's high-tech managers 632
15.11 The \mathbf{W}-array for the second-graders using friendship and age (the first subset consists of the 7 -year-old children, Eliot, Keith, and Sarah, and the second subset consists of the 8 -year-old children, Allison, Drew, and Ross.) 640
15.12 The \mathbf{W}-arrays for Krackhardt's high-tech managers, using tenure, and age and tenure 641
15.13 Parameters, models, and associated margins for models for attribute variables 643
15.14 Goodness-of-fit statistics for the fabricated network, using - attribute variables 647
15.15 Parameter estimates for children's friendship and age 648
15.16 Goodness-of-fit statistics for Krackhardt's managers and the advice relation, with attribute variables 649
15.17 Goodness-of-fit statistics for Krackhardt's managers and the friendship relation, with attribute variables 650
15.18 The V-array constructed from the \mathbf{Y}-array for the second- graders and friendship 652
15.19 Parameter estimates for Padgett's Florentine families 658
16.1 Comparison of density matrices to target blockmodels - countries trade example 690
16.2 Comparison of ties to target sociomatrices - countries trade example 691
List of Tables xxiii
16.3 Fit statistics for p_{1} and special cases 712
16.4 Fit statistics for p_{1} stochastic blockmodels 715
16.5 Predicted density matrix 717
B. 1 Advice relation between managers of Krackhardt's high- tech company 740
B. 2 Friendship relation between managers of Krackhardt's high-tech company 741
B. 3 "Reports to" relation between managers of Krackhardt's high-tech company 742
B. 4 Attributes for Krackhardt's high-tech managers 743
B. 5 Business relation between Florentine families 743
B. 6 Marital relation between Florentine families 744
B. 7 Attributes for Padgett's Florentine families 744
B. 8 Acquaintanceship at time 1 between Freeman's EIES researchers 745
B. 9 Acquaintanceship at time 2 between Freeman's EIES researchers 746
B. 10 Messages sent between Freeman's EIES researchers 747
B. 11 Attributes for Freeman's EIES researchers 748
B. 12 Trade of basic manufactured goods between countries 749
B. 13 Trade of food and live animals between countries 750
B. 14 Trade of crude materials, excluding food 751
B. 15 Trade of minerals, fuels, and other petroleum products between countries 752
B. 16 Exchange of diplomats between countries 753
B. 17 Attributes for countries trade network 754
B. 18 CEOs and clubs affiliation network matrix 755

List of Illustrations

1.1 How to read this book 27
3.1 The six actors and the directed lines between them - a sociogram 74
3.2 The six actors and the three sets of directed lines - a multivariate directed graph 76
4.1 Graph of "lives near" relation for six children 96
4.2 Subgraphs of a graph 98
4.3 Four possible triadic states in a graph 100
4.4 Complete and empty graphs 102
4.5 Graph and nodal degrees for Padgett's Florentine families, marriage relation 104
4.6 Walks, trails, and paths in a graph 106
4.7 Closed walks and cycles in a graph 108
4.8 A connected graph and a graph with components 109
4.9 Graph showing geodesics and diameter 111
4.10 Example of a cutpoint in a graph 113
4.11 Example of a bridge in a graph 114
4.12 Connectivity in a graph 116
4.13 Isomorphic graphs 118
4.14 Cyclic and acyclic graphs 119
4.15 Bipartite graphs 120
4.16 Friendship at the beginning of the year for six children 123
4.17 Dyads from the graph of friendship among six children at the beginning of the year 125
4.18 Directed walks, paths, semipaths, and semicycles 131
4.19 Different kinds of connectivity in a directed graph 133
4.20 Converse and complement of a directed graph 135
4.21 Example of a signed graph 138
4.22 Example of a signed directed graph 139
4.23 Example of a valued directed graph 142
List of Illustrations xxv
4.24 Paths in a valued graph 145
4.25 Example of a hypergraph 147
4.26 Example of matrix multiplication 158
5.1 Three illustrative networks for the study of centrality and prestige 171
6.1 The eight possible $P-O-X$ triples 224
6.2 An unbalanced signed graph 227
6.3 A balanced signed graph 228
6.4 An unbalanced signed digraph 229
6.5 A clusterable signed graph (with no unique clustering) 236
6.6 The sixteen possible triads for ranked clusterability in a complete signed graph 241
6.7 The sixteen possible triads for transitivity in a digraph 244
6.8 The type 16 triad, and all six triples of actors 246
7.1 A graph and its cliques 255
7.2 Graph illustrating n-cliques, n-clans, and n-clubs 259
7.3 A vulnerable 2-clique 264
7.4 A valued relation and derived graphs 281
7.5 A hypothetical example showing a permuted sociomatrix 286
7.6 Multidimensional scaling of path distances on the marriage relation for Padgett's Florentine families (Pucci family omitted) 289
8.1 Affiliation network matrix for the example of six children and three birthday parties 299
8.2 Bipartite graph of affiliation network of six children and three parties 301
8.3 Sociomatrix for the bipartite graph of six children and three parties 302
8.4 Hypergraph and dual hypergraph for example of six children and three parties 305
8.5 Actor co-membership matrix for the six children 310
8.6 Event overlap matrix for the three parties 310
8.7 Co-membership matrix for CEOs from Galaskiewicz's CEOs and clubs network 311
8.8 Event overlap matrix for clubs from Galaskiewicz's CEOs and clubs data 313
8.9 Relationships among birthday parties as subsets of children 329
8.10 Relationships among children as subsets of birthday parties 330
8.11 Galois lattice of children and birthday parties 333
8.12 Plot of correspondence analysis scores for CEOs and clubs example - CEOs in principal coordinates clubs in standard coordinates 340
9.1 An overview of positional and role analysis 352
9.2 Sociomatrix and directed graph illustrating structural equivalence 358
9.3 Example simplifying a network using structural equiva- lence 364
9.4 Euclidean distances computed on advice relation for Krackhardt's high-tech managers 372
9.5 Correlations calculated on the advice relation for Krack- hardt's high-tech managers 373
9.6 Dendrogram of positions from CONCOR of the advice relation for Krackhardt's high-tech managers 379
9.7 Dendrogram for complete link hierarchical clustering of Euclidean distances on the advice relation for Krackhardt's high-tech managers 383
9.8 Dendrogram for complete link hierarchical clustering of correlation coefficients on the advice relation for Krackhardt's high-tech managers 384
9.9 Multidimensional scaling of correlation coefficients on the advice relation for Krackhardt's high-tech managers 387
9.10 Advice sociomatrix for Krackhardt's high-tech man- agers permuted according to positions from hierarchical clustering of correlations 389
9.11 Density table for the advice relation from Krackhardt's high-tech managers, positions identified by hierarchical clustering of correlations 390
9.12 Image matrix for the advice relation from Krackhardt's high-tech managers, positions identified by hierarchical clustering of correlations 390
9.13 Reduced graph for the advice relation from Krackhardt's high-tech managers, positions identified by hierarchical clustering of correlations 392
10.1 Density tables for advice and friendship relations for Krackhardt's high-tech managers 403
10.2 Blockmodel image matrices for advice and friendship relations for Krackhardt's high-tech managers 403
10.3 Reduced graphs for advice and friendship relations for Krackhardt's high-tech managers 404
10.4 Density tables for manufactured goods, raw materials, and diplomatic ties 405
10.5 Image matrices for three relations in the countries trade example 406
10.6 Frequency of ties within and between positions for advice and friendship 416
10.7 Ten possible image matrices for a two-position blockmodel 421
10.8 Ideal images for blockmodels with more than two positions 423
11.1 Example of compound relations 431
11.2 Composition graph table for a hypothetical network 436
11.3 Multiplication table for a hypothetical network 438
11.4 Equivalence classes for a hypothetical multiplication table 438
11.5 Multiplication table for advice and friendship, expressed as compound relations 439
11.6 Image matrices for five distinct words formed from advice and friendship images 440
11.7 Equivalence classes for multiplication role table of advice and friendship 440
11.8 Multiplication table for advice and friendship 441
11.9 Inclusion ordering for the images from role structure of advice and friendship 445
11.10 Permuted and partitioned multiplication table for advice and friendship 446
11.11 Homomorphic reduction of the role table for advice and friendship 447
11.12 A second permuted and partitioned multiplication table for advice and friendship 448
11.13 A second homomorphic reduction of the role table for advice and friendship 448
11.14 Multiplication table for helping (A) and friendship (F) for the Bank Wiring room network 455
11.15 Permuted and partitioned multiplication table for helping and friendship for the Bank Wiring room network 456
12.1 Graph to illustrate equivalences 468
12.2 Graph to demonstrate regular equivalence 476
12.3 Blocked sociomatrix and image matrix for regular equivalence blockmodel 478
12.4 Regular equivalences computed using REGE on advice and friendship relations for Krackhardt's high-tech managers 482
12.5 Hierarchical clustering of regular equivalences on advice and friendship for Krackhardt's high-tech managers 483
12.6 A hypothetical graph for two relations 486
12.7 Local roles 487
12.8 Role equivalences for hypothetical example of two relations 491
12.9 Role equivalences for advice and friendship relations for Krackhardt's high-tech managers 492
12.10 Hierarchical clustering of role equivalences on advice and friendship relations for Krackhardt's high-tech managers 493
12.11 Ego algebras for the example of two relations 497
12.12 Distances between ego algebras for a hypothetical example of two relations 499
12.13 Distances between ego algebras computed on advice and friendship relations for Krackhardt's high-tech managers 500
12.14 Hierarchical clustering of distances between ego algebras on the two relations for Krackhardt's high-tech managers 501
13.1 The three dyadic isomorphism classes or states 511
13.2 The digraphs with the specified sets of outdegrees and indegrees 551
14.1 Sociogram of friendship at the beginning of the school year for the hypothetical children network 560
14.2 Mutual/cyclic asymmetric triad involving children Allison (n_{1}), Drew (n_{2}), and Eliot (n_{3}) 562
14.3 The six realizations of the single arc triad 563
14.4 The triad isomorphism classes (with standard MAN labeling) 566
14.5 Transitive configurations 588
16.1 Plot of $\hat{\alpha}_{i}$ versus $\hat{\beta}_{i}$ 713
16.2 Reduced graph based on predicted probabilities >0.30 718

