Contents

List of Tables pa	ge xxi
List of Illustrations	xxiv
Preface	xxix
Part I: Networks, Relations, and Structure	1
1 Social Network Analysis in the Social and Behavioral Sciences	3
1.1 The Social Networks Perspective	4
1.2 Historical and Theoretical Foundations	10
1.2.1 Empirical Motivations	11
1.2.2 Theoretical Motivations	13
1.2.3 Mathematical Motivations	15
1.2.4 In Summary	16
1.3 Fundamental Concepts in Network Analysis	17
1.4 Distinctive Features	21
1.5 Organization of the Book and How to Read It	22
1.5.1 Complexity	23
1.5.2 Descriptive and Statistical Methods	23
1.5.3 Theory Driven Methods	24
1.5.4 Chronology	24
1.5.5 Levels of Analysis	25
1.5.6 Chapter Prerequisites	26
1.6 Summary	27
2 Social Network Data	28
2.1 Introduction: What Are Network Data?	28
2.1.1 Structural and Composition Variables	29

2.1.2 Modes	29
2.1.3 Affiliation Variables	30
2.2 Boundary Specification and Sampling	30
2.2.1 What Is Your Population?	31
2.2.2 Sampling	33
2.3 Types of Networks	35
2.3.1 One-Mode Networks	36
2.3.2 Two-Mode Networks	39
2.3.3 Ego-centered and Special Dyadic Networks	41
2.4 Network Data, Measurement and Collection	43
2.4.1 Measurement	43
2.4.2 Collection	45
2.4.3 Longitudinal Data Collection	55
2.4.4 Measurement Validity, Reliability, Accuracy, Error	56
2.5 Data Sets Found in These Pages	59
2.5.1 Krackhardt's High-tech Managers	60
2.5.2 Padgett's Florentine Families	61
2.5.3 Freeman's EIES Network	62
2.5.4 Countries Trade Data	64
2.5.5 Galaskiewicz's CEOs and Clubs Network	65
2.5.6 Other Data	66
Part II: Mathematical Representations of Social Networks	67
3 Notation for Social Network Data	69
3.1 Graph Theoretic Notation	71
3.1.1 A Single Relation	71
3.1.2 OMultiple Relations	73
3.1.3 Summary	75
3.2 Sociometric Notation	77
3.2.1 Single Relation	79
3.2.2 Multiple Relations	81
3.2.3 Summary	83
3.3 OAlgebraic Notation	84
3.4 OTwo Sets of Actors	85
3.4.1 ØDifferent Types of Pairs	86
3.4.2 OSociometric Notation	87
3.5 Putting It All Together	89

		Contents	xi
4	Gra	phs and Matrices	92
	4.1	Why Graphs?	93
	4.2	Graphs	94
		4.2.1 Subgraphs, Dyads, and Triads	97
		4.2.2 Nodal Degree	100
		4.2.3 Density of Graphs and Subgraphs	101
		4.2.4 Example: Padgett's Florentine Families	103
		4.2.5 Walks, Trails, and Paths	105
		4.2.6 Connected Graphs and Components	109
		4.2.7 Geodesics, Distance, and Diameter	110
		4.2.8 Connectivity of Graphs	112
		4.2.9 Isomorphic Graphs and Subgraphs	117
		4.2.10 OSpecial Kinds of Graphs	119
	4.3	Directed Graphs	121
		4.3.1 Subgraphs – Dyads	124
		4.3.2 Nodal Indegree and Outdegree	125
		4.3.3 Density of a Directed Graph	129
		4.3.4 An Example	129
		4.3.5 Directed Walks, Paths, Semipaths	129
		4.3.6 Reachability and Connectivity in Digraphs	132
		4.3.7 Geodesics, Distance and Diameter	134
		4.3.8 OSpecial Kinds of Directed Graphs	134
		4.3.9 Summary	136
	4.4	Signed Graphs and Signed Directed Graphs	136
		4.4.1 Signed Graph	137
		4.4.2 Signed Directed Graphs	138
	4.5	Valued Graphs and Valued Directed Graphs	140
		4.5.1 Nodes and Dyads	142
		4.5.2 Density in a Valued Graph	143
		4.5.3 OPaths in Valued Graphs	143
	4.6	Multigraphs	145
	4.7	⊗Hypergraphs	146
	4.8	Relations	148
		4.8.1 Definition	148
		4.8.2 Properties of Relations	149
	4.9	Matrices	150
		4.9.1 Matrices for Graphs	150
		4.9.2 Matrices for Digraphs	152
		4.9.3 Matrices for Valued Graphs	153
		4.9.4 Matrices for Two-Mode Networks	154

4.9.5 OMatrices for Hypergraphs	154
4.9.6 Basic Matrix Operations	154
4.9.7 Computing Simple Network Properties	159
4.9.8 Summary	164
4.10 Properties	164
4.10.1 Reflexivity	164
4.10.2 Symmetry	165
4.10.3 Transitivity	165
4.11 Summary	165
Part III: Structural and Locational Properties	167
5 Centrality and Prestige	169
5.1 Prominence: Centrality and Prestige	172
5.1.1 Actor Centrality	173
5.1.2 Actor Prestige	174
5.1.3 Group Centralization and Group Prestige	175
5.2 Nondirectional Relations	177
5.2.1 Degree Centrality	178
5.2.2 Closeness Centrality	183
5.2.3 Betweenness Centrality	188
5.2.4	192
5.3 Directional Relations	198
5.3.1 Centrality	199
5.3.2 Prestige	202
5.3.3 A Different Example	210
5.4 Comparisons and Extensions	215
6 Structural Balance and Transitivity	220
6.1 Structural Balance	222
6.1.1 Signed Nondirectional Relations	223
6.1.2 Signed Directional Relations	228
6.1.3 OChecking for Balance	230
6.1.4 An Index for Balance	232
6.1.5 Summary	232
6.2 Clusterability	233
6.2.1 The Clustering Theorems	235
6.2.2 Summary	238
6.3 Generalizations of Clusterability	239

	Contents	xiii
	6.3.1 Empirical Evidence	239
	6.3.2 ORanked Clusterability	240
	6.3.3 Summary	242
6.4	Transitivity	243
	Conclusion	247
7 Coh	esive Subgroups	249
7.1	Background	250
	7.1.1 Social Group and Subgroup	250
	7.1.2 Notation	252
7.2	Subgroups Based on Complete Mutuality	253
	7.2.1 Definition of a Clique	254
	7.2.2 An Example	254
	7.2.3 Considerations	256
7.3	Reachability and Diameter	257
	7.3.1 <i>n</i> -cliques	258
	7.3.2 An Example	259
	7.3.3 Considerations	260
	7.3.4 <i>n</i> -clans and <i>n</i> -clubs	260
	7.3.5 Summary	262
7.4	Subgroups Based on Nodal Degree	263
	7.4.1 k-plexes	265
	7.4.2 <i>k</i> -cores	266
7.5	Comparing Within to Outside Subgroup Ties	267
	7.5.1 LS Sets	268
	7.5.2 Lambda Sets	269
7.6	Measures of Subgroup Cohesion	270
7.7	Directional Relations	273
	7.7.1 Cliques Based on Reciprocated Ties	273
	7.7.2 Connectivity in Directional Relations	274
	7.7.3 n-cliques in Directional Relations	275
7.8	Valued Relations	277
	7.8.1 Cliques, n-cliques, and k-plexes	278
	7.8.2 Other Approaches for Valued Relations	282
7.9	Interpretation of Cohesive Subgroups	283
7.10	Other Approaches	284
	7.10.1 Matrix Permutation Approaches	284
	7.10.2 Multidimensional Scaling	287
	7.10.3 OFactor Analysis	290
7.11	Summary	290

8	Affiliations and Overlapping Subgroups	291
	8.1 Affiliation Networks	291
	8.2 Background	292
	8.2.1 Theory	292
	8.2.2 Concepts	294
	8.2.3 Applications and Rationale	295
	8.3 Representing Affiliation Networks	298
	8.3.1 The Affiliation Network Matrix	298
	8.3.2 Bipartite Graph	299
	8.3.3 Hypergraph	303
	8.3.4 OSimplices and Simplicial Complexes	306
	8.3.5 Summary	306
	8.3.6 An example: Galaskiewicz's CEOs and Clubs	307
	8.4 One-mode Networks	307
	8.4.1 Definition	307
	8.4.2 Examples	309
	8.5 Properties of Affiliation Networks	312
	8.5.1 Properties of Actors and Events	312
	8.5.2 Properties of One-mode Networks	314
	8.5.3 Taking Account of Subgroup Size	322
	8.5.4 Interpretation	324
	8.6	326
	8.6.1	326
	8.6.2 Ocrrespondence Analysis	334
	8.7 Summary	342
Pa	rt IV: Roles and Positions	345
9	Structural Equivalence	347
	9.1 Background	348
	9.1.1 Social Roles and Positions	348
	9.1.2 An Overview of Positional and Role Analysis	351
	9.1.3 A Brief History	354
	9.2 Definition of Structural Equivalence	356
	9.2.1 Definition	356
	9.2.2 An Example	357
	9.2.3 Some Issues in Defining Structural Equivalence	359
	9.3 Positional Analysis	361
	9.3.1 Simplification of Multirelational Networks	361

		Contents	xv
		9.3.2 Tasks in a Positional Analysis	363
	9.4	Measuring Structural Equivalence	366
		9.4.1 Euclidean Distance as a Measure of Structural	
		Equivalence	367
		9.4.2 Correlation as a Measure of Structural Equivalence	368
		9.4.3 Some Considerations in Measuring Structural	
		Equivalence	370
	9.5	Representation of Network Positions	375
		9.5.1 Partitioning Actors	375
		9.5.2 Spatial Representations of Actor Equivalences	385
		9.5.3 Ties Between and Within Positions	388
	9.6	Summary	391
10	Bloc	kmodels	394
10		Definition	395
		Building Blocks	397
	10.2	10.2.1 Perfect Fit (Fat Fit)	398
		10.2.2 Zeroblock (Lean Fit) Criterion	399
		10.2.3 Oneblock Criterion	400
		10.2.4 a Density Criterion	400
		10.2.5 Comparison of Criteria	401
		10.2.6 Examples	401
		10.2.7 Valued Relations	406
	10.3	Interpretation	408
		10.3.1 Actor Attributes	408
		10.3.2 Describing Individual Positions	411
		10.3.3 Image Matrices	417
	10.4	Summary	423
11	Rela	tional Algebras	425
		Background	426
		Notation and Algebraic Operations	428
		11.2.1 Composition and Compound Relations	429
		11.2.2 Properties of Composition and Compound	
		Relations	432
	11.3	Multiplication Tables for Relations	433
		11.3.1 Multiplication Tables and Relational Structures	435
		11.3.2 An Example	439
	11.4	Simplification of Role Tables	442
		11.4.1 Simplification by Comparing Images	443

.

		11.4.2	445
1	1.5	⊗Comparing Role Structures	449
		11.5.1 Joint Homomorphic Reduction	451
		11.5.2 The Common Structure Semigroup	452
		11.5.3 An Example	453
		11.5.4 Measuring the Similarity of Role Structures	457
1	1.6	Summary	460
10 7	Tate	week Desitions and Dalas	461
		work Positions and Roles	461
L	12.1	Background 12.1.1 Theoretical Definitions of Roles and Positions	462
		12.1.2 Levels of Role Analysis in Social Networks	464
		12.1.2 Equivalences in Networks	404
1	122	Structural Equivalence, Revisited	468
		Automorphic and Isomorphic Equivalence	469
1	12.5	12.3.1 Definition	470
		12.3.2 Example	471
		12.3.2 Datample 12.3.3 Measuring Automorphic Equivalence	472
1	12.4	Regular Equivalence	473
-		12.4.1 Definition of Regular Equivalence	474
		12.4.2 Regular Equivalence for Nondirectional Relations	475
		12.4.3 Regular Equivalence Blockmodels	476
		12.4.4 OA Measure of Regular Equivalence	479
		12.4.5 An Example	481
1	12.5	"Types" of Ties	483
		12.5.1 An Example	485
1	2.6	Local Role Equivalence	487
		12.6.1 Measuring Local Role Dissimilarity	488
		12.6.2 Examples	491
1	2.7	⊗Ego Algebras	494
		12.7.1 Definition of Ego Algebras	496
		12.7.2 Equivalence of Ego Algebras	497
		12.7.3 Measuring Ego Algebra Similarity	497
		12.7.4 Examples	499
1	2.8	Discussion	502

		Contents	xvii
Pa	rt V	: Dyadic and Triadic Methods	503
13	Dya	ds	505
	13.1	An Overview	506
	13.2	An Example and Some Definitions	508
	13.3	Dyads	510
		13.3.1 The Dyad Census	512
		13.3.2 The Example and Its Dyad Census	513
		13.3.3 An Index for Mutuality	514
		13.3.4 🛇 A Second Index for Mutuality	518
		13.3.5 OSubgraph Analysis, in General	520
	13.4	Simple Distributions	522
		13.4.1 The Uniform Distribution – A Review	524
		13.4.2 Simple Distributions on Digraphs	526
	13.5	Statistical Analysis of the Number of Arcs	528
		13.5.1 Testing	529
		13.5.2 Estimation	533
	13.6	⊗Conditional Uniform Distributions	535
		13.6.1 Uniform Distribution, Conditional on the Number	
		of Arcs	536
		13.6.2 Uniform Distribution, Conditional on the	
			537
	13.7	Statistical Analysis of the Number of Mutuals	539
		13.7.1 Estimation	540
		13.7.2 Testing	542
		13.7.3 Examples	543
	13.8	Other Conditional Uniform Distributions	544
		, · · · · · · · · · · · · · · · · · · ·	545
		13.8.2 The $U MAN$ Distribution	547
		13.8.3 More Complex Distributions	550
	13.9	Other Research	552
1	3.10	Conclusion	555
14	Tria		556
	14.1	5 1	558
	14.2		559
			564
		-	574
	14.3		575
		14.3.1 \bigotimes Mean and Variance of a k-subgraph Census	576

		14.3.2	Mean and Variance of a Triad Census	579
		14.3.3	Return to the Example	581
		14.3.4	Mean and Variance of Linear Combinations of a	
			Triad Census	582
		14.3.5	A Brief Review	584
	14.4	Testing	g Structural Hypotheses	585
		14.4.1	Configurations	585
		14.4.2	From Configurations to Weighting Vectors	590
		14.4.3	From Weighting Vectors to Test Statistics	592
		14.4.4	An Example	595
		14.4.5	Another Example — Testing for Transitivity	596
	14.5	Genera	alizations and Conclusions	598
	14.6	Summ	ary	601
Pa	rt V	I: Stat	istical Dyadic Interaction Models	603
15	Stat	istical A	Analysis of Single Relational Networks	605
	15.1	Single	Directional Relations	607
		15.1.1	The Y-array	608
		15.1.2	Modeling the Y-array	612
		15.1.3	Parameters	619
		15.1.4	\bigotimes Is p_1 a Random Directed Graph Distribution?	633
		15.1.5	Summary	634
	15.2	Attrib	ute Variables	635
		15.2.1	Introduction	636
		15.2.2	The W-array	637
		15.2.3	The Basic Model with Attribute Variables	640
		15.2.4	Examples: Using Attribute Variables	646
	15.3	Relate	d Models for Further Aggregated Data	649
		15.3.1	Strict Relational Analysis — The V-array	651
		15.3.2	Ordinal Relational Data	654
	15.4	⊖Non	directional Relations	656
		15.4.1	A Model	656
		15.4.2	An Example	657
	15.5	⊗Rec	ent Generalizations of p_1	658
	15.6	Sing	le Relations and Two Sets of Actors	662
		15.6.1	Introduction	662
		15.6.2	The Basic Model	663
		15.6.3	Aggregating Dyads for Two-mode Networks	664

		Contents	xix
	15.7	Computing for Log-linear Models	665
		15.7.1 Computing Packages	666
		15.7.2 From Printouts to Parameters	671
	15.8	Summary	673
16	Stoc	hastic Blockmodels and Goodness-of-Fit Indices	675
	16.1	Evaluating Blockmodels	678
		16.1.1 Goodness-of-Fit Statistics for Blockmodels	679
		16.1.2 Structurally Based Blockmodels and Permutation	
		Tests	688
		16.1.3 An Example	689
	16.2	Stochastic Blockmodels	692
		16.2.1 Definition of a Stochastic Blockmodel	694
		16.2.2 Definition of Stochastic Equivalence	696
		16.2.3 Application to Special Probability Functions	697
		16.2.4 Goodness-of-Fit Indices for Stochastic Blockmodels	703
		16.2.5 OStochastic a posteriori Blockmodels	706
		16.2.6 Measures of Stochastic Equivalence	708
		16.2.7 Stochastic Blockmodel Representations	709
		16.2.8 The Example Continued	712
	16.3	Summary: Generalizations and Extensions	719
		16.3.1 Statistical Analysis of Multiple Relational Networks	719
		16.3.2 Statistical Analysis of Longitudinal Relations	721
Pa	rt V	II: Epilogue	725
17	Futu	re Directions	727
	17.1	Statistical Models	727
	17.2	Generalizing to New Kinds of Data	729
		17.2.1 Multiple Relations	730
		17.2.2 Dynamic and Longitudinal Network Models	730
		17.2.3 Ego-centered Networks	731
	17.3	Data Collection	731
	17.4	Sampling	732
	17.5	General Propositions about Structure	732
	17.6	Computer Technology	733
	17.7	Networks and Standard Social and Behavioral Science	733

Appendix A Computer Programs	735
Appendix B Data	738
References	756
Name Index	802
Subject Index	811
List of Notation	819

List of Tables

3.1	Sociomatrices for the six actors and three relations of	
	Figure 3.2	82
3.2	The sociomatrix for the relation "is a student of" defined for heterogeneous pairs from \mathcal{N} and \mathcal{M}	88
4.1	Nodal degree and density for friendships among Krack-	
	hardt's high-tech managers	130
4.2	Example of a sociomatrix: "lives near" relation for six	
	children	151
4.3	Example of an incidence matrix: "lives near" relation for	
	six children	152
4.4	Example of a sociomatrix for a directed graph: friendship	
	at the beginning of the year for six children	153
4.5	Example of matrix permutation	156
4.6	Transpose of a sociomatrix for a directed relation:	
	friendship at the beginning of the year for six children	157
4.7	Powers of a sociomatrix for a directed graph	162
5.1	Centrality indices for Padgett's Florentine families	183
5.2	Centrality for the countries trade network	211
5.3	Prestige indices for the countries trade network	213
6.1	Powers of a sociomatrix of a signed graph, to demonstrate	
	cycle signs, and hence, balance	231
8.1	Cliques in the actor co-membership relation for Galaskie-	
	wicz's CEOs and clubs network	321
8.2	Cliques in the event overlap relation for Galaskiewicz's	
	CEOs and clubs network	321
8.3	Correspondence analysis scores for CEOs and clubs	341
	Mean age and tenure of actors in positions for Krack-	
	hardt's high-tech managers (standard deviations in	
	parentheses)	410

10.2	Means of variables within positions for countries trade	
	example	412
10.3	Typology of positions (adapted from Burt (1976))	414
10.4	Typology of positions for Krackhardt's high-tech managers	416
	Some sociomatrices for three triad isomorphism classes	564
14.2	Weighting vectors for statistics and hypothesis concerning	
	the triad census	573
14.3	Triadic analysis of Krackhardt's friendship relation	582
14.4	Covariance matrix for triadic analysis of Krackhardt's	
	friendship relation	583
14.5	Configuration types for Mazur's proposition	593
15.1	Sociomatrix for the second-grade children	610
15.2	y for the second-grade children	611
15.3	Constraints on the $\{\alpha_{i(k)}\}$ parameters in model (15.3)	617
15.4	p_1 parameter estimates for the second-graders	618
15.5	y fitted values for p_1 fit to the second-grade children	623
15.6	p_1 parameters, models, and associated margins	628
15.7	Tests of significance for parameters in model (15.3)	630
15.8	Goodness-of-fit statistics for the fabricated network	631
15.9	Goodness-of-fit statistics for Krackhardt's network	631
15.10	Parameter estimates for Krackhardt's high-tech managers	632
15.11	The W-array for the second-graders using friendship and	
	age (the first subset consists of the 7-year-old children,	
	Eliot, Keith, and Sarah, and the second subset consists of	
	the 8-year-old children, Allison, Drew, and Ross.)	640
15.12	The W-arrays for Krackhardt's high-tech managers, using	
	tenure, and age and tenure	641
15.13	Parameters, models, and associated margins for models	
	for attribute variables	643
15.14	Goodness-of-fit statistics for the fabricated network, using-	
	attribute variables	647
	Parameter estimates for children's friendship and age	648
15.16	Goodness-of-fit statistics for Krackhardt's managers and	
	the advice relation, with attribute variables	649
15.17	Goodness-of-fit statistics for Krackhardt's managers and	
	the friendship relation, with attribute variables	650
15.18	The V-array constructed from the Y-array for the second-	
	graders and friendship	652
	Parameter estimates for Padgett's Florentine families	658
16.1	Comparison of density matrices to target blockmodels -	
	countries trade example	690
16.2	Comparison of ties to target sociomatrices - countries	
	trade example	691

16.3	Fit statistics for p_1 and special cases	712
	Fit statistics for p_1 stochastic blockmodels	715
	Predicted density matrix	717
B.1	Advice relation between managers of Krackhardt's high-	
	tech company	740
B.2	Friendship relation between managers of Krackhardt's	
	high-tech company	741
B.3	"Reports to" relation between managers of Krackhardt's	
	high-tech company	742
B.4	Attributes for Krackhardt's high-tech managers	743
B.5	Business relation between Florentine families	743
B.6	Marital relation between Florentine families	744
B. 7	Attributes for Padgett's Florentine families	744
B. 8	Acquaintanceship at time 1 between Freeman's EIES	
	researchers	745
B.9	Acquaintanceship at time 2 between Freeman's EIES	
	researchers	746
B.10	Messages sent between Freeman's EIES researchers	747
B.11	Attributes for Freeman's EIES researchers	748
B.12	Trade of basic manufactured goods between countries	749
B.13	Trade of food and live animals between countries	750
B.14	Trade of crude materials, excluding food	751
B.15	Trade of minerals, fuels, and other petroleum products	
	between countries	752
	Exchange of diplomats between countries	753
B .17	Attributes for countries trade network	754
B.18	CEOs and clubs affiliation network matrix	755

List of Illustrations

1.1	How to read this book	27
3.1	The six actors and the directed lines between them a	
	sociogram	74
3.2	The six actors and the three sets of directed lines — a	
	multivariate directed graph	76
	Graph of "lives near" relation for six children	96
	Subgraphs of a graph	98
	Four possible triadic states in a graph	100
	Complete and empty graphs	102
4.5	Graph and nodal degrees for Padgett's Florentine families,	
	marriage relation	104
	Walks, trails, and paths in a graph	106
	Closed walks and cycles in a graph	108
	A connected graph and a graph with components	109
	Graph showing geodesics and diameter	111
	Example of a cutpoint in a graph	113
	Example of a bridge in a graph	114
	Connectivity in a graph	116
4.13	Isomorphic graphs	118
4.14	Cyclic and acyclic graphs	119
4.15	Bipartite graphs	120
4.16	Friendship at the beginning of the year for six children	123
4.17	Dyads from the graph of friendship among six children at	
	the beginning of the year	125
4.18	Directed walks, paths, semipaths, and semicycles	131
4.19	Different kinds of connectivity in a directed graph	133
4.20	Converse and complement of a directed graph	135
4.21	Example of a signed graph	138
4.22	Example of a signed directed graph	139
4.23	Example of a valued directed graph	142

4.24	Paths in a valued graph	145
4.25	Example of a hypergraph	147
4.26	Example of matrix multiplication	158
5.1	Three illustrative networks for the study of centrality and	
	prestige	171
6.1	The eight possible P-O-X triples	224
6.2	An unbalanced signed graph	227
6.3	A balanced signed graph	228
6.4	An unbalanced signed digraph	229
6.5	A clusterable signed graph (with no unique clustering)	236
6.6	The sixteen possible triads for ranked clusterability in a	
	complete signed graph	241
6.7	The sixteen possible triads for transitivity in a digraph	244
6.8	The type 16 triad, and all six triples of actors	246
7.1	A graph and its cliques	255
7.2	Graph illustrating <i>n</i> -cliques, <i>n</i> -clans, and <i>n</i> -clubs	259
7.3	A vulnerable 2-clique	264
7.4	A valued relation and derived graphs	281
	A hypothetical example showing a permuted sociomatrix	286
7.6	Multidimensional scaling of path distances on the marriage	
	relation for Padgett's Florentine families (Pucci family	
	omitted)	289
8.1	Affiliation network matrix for the example of six children	
	and three birthday parties	299
8.2	Bipartite graph of affiliation network of six children and	
	three parties	301
8.3	Sociomatrix for the bipartite graph of six children and	
	three parties	302
8.4	Hypergraph and dual hypergraph for example of six	
	children and three parties	305
	Actor co-membership matrix for the six children	310
	Event overlap matrix for the three parties	310
8.7	Co-membership matrix for CEOs from Galaskiewicz's	
	CEOs and clubs network	311
8.8	Event overlap matrix for clubs from Galaskiewicz's CEOs	210
0.0	and clubs data	313
8.9	Relationships among birthday parties as subsets of	220
0 10	children	329
ō.10	Relationships among children as subsets of birthday parties	330
0 1 1	~	
0.11	Galois lattice of children and birthday parties	333

XXV

8.12	Plot of correspondence analysis scores for CEOs and clubs example — CEOs in principal coordinates clubs in	
	standard coordinates	340
9.1	An overview of positional and role analysis	352
9.2	Sociomatrix and directed graph illustrating structural equivalence	358
9.3	Example simplifying a network using structural equiva- lence	364
9.4	Euclidean distances computed on advice relation for Krackhardt's high-tech managers	372
	Correlations calculated on the advice relation for Krack- hardt's high-tech managers	373
9.6	Dendrogram of positions from CONCOR of the advice relation for Krackhardt's high-tech managers	379
9.7	Dendrogram for complete link hierarchical clustering of Euclidean distances on the advice relation for Krackhardt's high-tech managers	383
9.8	Dendrogram for complete link hierarchical clustering of correlation coefficients on the advice relation for	384
0.0	Krackhardt's high-tech managers	384
	Multidimensional scaling of correlation coefficients on the advice relation for Krackhardt's high-tech managers	387
	Advice sociomatrix for Krackhardt's high-tech man- agers permuted according to positions from hierarchical clustering of correlations	389
9.11	Density table for the advice relation from Krackhardt's high-tech managers, positions identified by hierarchical clustering of correlations	390
9.12	Image matrix for the advice relation from Krackhardt's high-tech managers, positions identified by hierarchical clustering of correlations	390
9.13	Reduced graph for the advice relation from Krackhardt's high-tech managers, positions identified by hierarchical	
	clustering of correlations	392
	Density tables for advice and friendship relations for Krackhardt's high-tech managers	403
	Blockmodel image matrices for advice and friendship relations for Krackhardt's high-tech managers	403
	Reduced graphs for advice and friendship relations for Krackhardt's high-tech managers	404
10.4	Density tables for manufactured goods, raw materials, and diplomatic ties	405

10.5	Image matrices for three relations in the countries trade example	406
10.6	Frequency of ties within and between positions for advice	400
10.0	and friendship	416
10.7	Ten possible image matrices for a two-position blockmodel	421
10.8	Ideal images for blockmodels with more than two positions	423
11.1	Example of compound relations	431
11.2	Composition graph table for a hypothetical network	436
11.3	Multiplication table for a hypothetical network	438
11.4	Equivalence classes for a hypothetical multiplication table	438
	Multiplication table for advice and friendship, expressed	
	as compound relations	439
11.6	Image matrices for five distinct words formed from advice and friendship images	440
117	Equivalence classes for multiplication role table of advice	770
11./	and friendship	440
11.8	Multiplication table for advice and friendship	441
	Inclusion ordering for the images from role structure of	
	advice and friendship	445
11.10	Permuted and partitioned multiplication table for advice	
	and friendship	446
11.11	Homomorphic reduction of the role table for advice and	
	friendship	447
11.12	A second permuted and partitioned multiplication table	
	for advice and friendship	448
11.13	A second homomorphic reduction of the role table for	
	advice and friendship	448
11.14	Multiplication table for helping (A) and friendship (F) for	
	the Bank Wiring room network	455
11.15	Permuted and partitioned multiplication table for helping	
	and friendship for the Bank Wiring room network	456
	Graph to illustrate equivalences	468
	Graph to demonstrate regular equivalence	476
12.3	Blocked sociomatrix and image matrix for regular	
	equivalence blockmodel	478
12.4	Regular equivalences computed using REGE on advice	
	and friendship relations for Krackhardt's high-tech	
	managers	482
12.5	Hierarchical clustering of regular equivalences on advice	
	and friendship for Krackhardt's high-tech managers	483
	A hypothetical graph for two relations	486
12.7	Local roles	487

12.8	Role equivalences for hypothetical example of two	40.1
	relations	491
12.9	Role equivalences for advice and friendship relations for	
	Krackhardt's high-tech managers	492
12.10	Hierarchical clustering of role equivalences on advice and	
	friendship relations for Krackhardt's high-tech managers	493
12.11	Ego algebras for the example of two relations	497
12.12	Distances between ego algebras for a hypothetical example	
	of two relations	499
12.13	Distances between ego algebras computed on advice and	
	friendship relations for Krackhardt's high-tech managers	500
12.14	Hierarchical clustering of distances between ego algebras	
	on the two relations for Krackhardt's high-tech managers	501
13.1	The three dyadic isomorphism classes or states	511
	The digraphs with the specified sets of outdegrees and	
	indegrees	551
14.1	Sociogram of friendship at the beginning of the school	
	year for the hypothetical children network	560
14.2	Mutual/cyclic asymmetric triad involving children Allison	
	(n_1) , Drew (n_2) , and Eliot (n_3)	562
14.3	The six realizations of the single arc triad	563
	The triad isomorphism classes (with standard MAN	
	labeling)	566
14.5	Transitive configurations	588
	Plot of $\hat{\alpha}_i$ versus $\hat{\beta}_i$	713
	Reduced graph based on predicted probabilities > 0.30	718