Contents

List of Algorithms x				xi		
1	Intr 1.1 1.2		ion and User Guide duction and concept	1 1 2		
	1.3	How t	to use this book	3		
	1.4		er literature	3		
	1.5		owledgments	4		
2	Generating Random Numbers					
	2.1		luction	5		
		2.1.1	How do we get random numbers?	5		
		2.1.2	Quality criteria for RNGs	6		
		2.1.3	Technical terms	8		
	2.2	Exam	ples of random number generators	8		
		2.2.1	Linear congruential generators	8		
		2.2.2	Multiple recursive generators	12		
		2.2.3	Combined generators	15		
		2.2.4	Lagged Fibonacci generators	16		
		2.2.5	\mathbb{F}_2 -linear generators	17		
		2.2.6	Nonlinear RNGs	22		
		2.2.7	More random number generators	24		
		2.2.8	Improving RNGs	24		
	2.3	Testin	g and analyzing RNGs	25		
		2.3.1	Analyzing the lattice structure	25		
		2.3.2	Equidistribution	26		
		2.3.3	Diffusion capacity	27		
		2.3.4	Statistical tests	27		
	2.4	Genera	ating random numbers with general distributions	31		
		2.4.1	Inversion method	31		
		2.4.2	Acceptance-rejection method	33		
	2.5	Selecte	ed distributions	36		
		2.5.1	Generating normally distributed random numbers	36		
		2.5.2	Generating beta-distributed RNs	38		
		2.5.3	Generating Weibull-distributed RNs	38		
		2.5.4	Generating gamma-distributed RNs	39		
		2.5.5	Generating chi-square-distributed RNs	42		

	2.6	Multiv	variate random variables	43
		2.6.1	Multivariate normals	43
		2.6.2	Remark: Copulas	44
		2.6.3	Sampling from conditional distributions	44
	2.7	Quasi	random sequences as a substitute for random sequences	45
		2.7.1	Halton sequences	47
		2.7.2	Sobol sequences	48
		2.7.3	Randomized quasi-Monte Carlo methods	49
		2.7.4	Hybrid Monte Carlo methods	50
		2.7.5	Quasirandom sequences and transformations into	
			other random distributions	50
	2.8	Parall	elization techniques	51
		2.8.1	Leap-frog method	51
		2.8.2	Sequence splitting	52
		2.8.3	Several RNGs	53
		2.8.4	Independent sequences	53
		2.8.5	Testing parallel RNGs	53
3	The	Mont	te Carlo Method: Basic Principles	55
	3.1		luction	55
	3.2	The st	trong law of large numbers and the Monte Carlo method	56
		3.2.1	The strong law of large numbers	56
		3.2.2	The crude Monte Carlo method	57
		3.2.3	The Monte Carlo method: Some first applications	6 0
	3.3	Impro	wing the speed of convergence of the Monte Carlo method:	
		Variar	nce reduction methods	65
		3.3.1	Antithetic variates	66
		3.3.2	Control variates	70
		3.3.3	Stratified sampling	76
		3.3.4	Variance reduction by conditional sampling	85
		3.3.5	Importance sampling	87
	3.4	Furth	er aspects of variance reduction methods	97
		3.4.1	More methods	97
		3.4.2	Application of the variance reduction methods	100
4	Con	tinuo	us-Time Stochastic Processes: Continuous Paths	103
	4.1		luction	103
	4.2	Stoch	astic processes and their paths: Basic definitions	103
	4.3	The M	Monte Carlo method for stochastic processes	107
		4.3.1	Monte Carlo and stochastic processes	107
		4.3.2	Simulating paths of stochastic processes: Basics	108
		4.3.3	Variance reduction for stochastic processes	110
	4.4	Brown	nian motion and the Brownian bridge	111
		4.4.1	Properties of Brownian motion	113
		4.4.2	Weak convergence and Donsker's theorem	116

$dge \dots \dots$	4.4.3		
3	4.5 Basic		
${ m ral} \ldots \ldots \ldots \ldots 126$	4.5.1		
ula	4.5.2		
epresentation and change of measure 135	4.5.3		
d equations	4.6 Stock		
on stochastic differential equations 137	4.6.1		
stic differential equations 139	4.6.2		
oot stochastic differential equation 141	4.6.3		
n-Kac representation theorem 142	4.6.4		
of stochastic differential equations 145	4.7 Simu		
and basic aspects 145	4.7.1		
nemes for ordinary differential equations 146	4.7.2		
nemes for stochastic differential equations 151	4.7.3		
of numerical schemes for SDEs 156	4.7.4		
cal schemes for SDEs 159	4.7.5		
numerical schemes for SDEs 162	4.7.6		
plation methods 163	4.7.7		
el Monte Carlo method 167	4.7.8		
ethods for SDE should be chosen? 173	4.8 Which		
Models: Continuous Paths 175	Simulatir		
	5.1 Intro		
modelling			
e stock price framework 177			
special case: The Black-Scholes model . 180	5.3.1		
of the market model	5.3.2		
s			
ption pricing			
ry of option pricing	5.5.1		
g via the replication principle 187	5.5.2		
the Black-Scholes setting 195	5.5.3		
the Monte Carlo method in the Black-			
	Schol		
dent European options 197	5.6.1		
ent European options 199	5.6.2		
ptions	5.6.3		
essing by moment matching methods 211	5.6.4		
ack-Scholes model			
els and the CEV model			
oricing with Monte Carlo methods 219	5.8.1		
ating a model			
9			
cing in incomplete markets			
cing in incomplete markets			

		0.11.2	The neath-Platen estimator in the neston model	232
	5.12	Varian	ce reduction principles in non-Black-Scholes models	238
			astic local volatility models	239
	5.14	Monte	Carlo option pricing: American and Bermudan options	240
		5.14.1	The Longstaff-Schwartz algorithm and regression-based	
			variants for pricing Bermudan options	243
		5.14.2	Upper price bounds by dual methods	250
	5.15	Monte	Carlo calculation of option price sensitivities	257
		5.15.1	The role of the price sensitivities	257
		5.15.2	Finite difference simulation	258
		5.15.3	The pathwise differentiation method	261
		5.15.4	The likelihood ratio method	264
		5.15.5	Combining the pathwise differentiation and the	
			likelihood ratio methods by localization	265
			Numerical testing in the Black-Scholes setting	267
	5.16		of interest rate modelling	269
		5.16.1	Different notions of interest rates	270
		5.16.2	Some popular interest rate products	271
	5.17		nort rate approach to interest rate modelling	275
		5.17.1	Change of numeraire and option pricing: The forward	
			measure	276
			The Vasicek model	278
			The Cox-Ingersoll-Ross (CIR) model	281
			Affine linear short rate models	283
		5.17.5	Perfect calibration: Deterministic shifts and the Hull-	
			White approach	283
			Log-normal models and further short rate models	287
	5.18		orward rate approach to interest rate modelling	288
			The continuous-time Ho-Lee model	289
			The Cheyette model	290
	5.19		R market models	293
			Log-normal forward-LIBOR modelling	294
			Relation between the swaptions and the cap market .	297
		5.19.3	Aspects of Monte Carlo path simulations of forward-	
			LIBOR rates and derivative pricing	299
		5.19.4	Monte Carlo pricing of Bermudan swaptions with a	
			parametric exercise boundary and further comments .	305
		5.19.5	Alternatives to log-normal forward-LIBOR models	308
:	Con	tinuc	s-Time Stochastic Processes: Discontinuous Paths	300
,	6.1	Introd		309
	6.2		n processes and Poisson random measures: Definition	JUS
	0.2		mulation	310
		6.2.1	Stochastic integrals with respect to Poisson processes	312
	6.3		diffusions: Basics, properties, and simulation	315
	0.0	oump-	antibions. Dasies, properties, and simulation	OTC

		6.3.1	Simulating Gauss-Poisson jump-diffusions	317		
		6.3.2	Euler-Maruyama scheme for jump-diffusions	319		
	6.4	Lévy	processes: Properties and examples	320		
		6.4.1	Definition and properties of Lévy processes	320		
		6.4.2	Examples of Lévy processes	324		
	6.5	Simul	ation of Lévy processes	329		
		6.5.1	Exact simulation and time discretization	329		
		6.5.2	The Euler-Maruyama scheme for Lévy processes	330		
		6.5.3	Small jump approximation	331		
		6.5.4	Simulation via series representation	333		
7	Sim	ulatin	g Financial Models: Discontinuous Paths	335		
	7.1	Intro	duction	335		
	7.2	Merto	on's jump-diffusion model and stochastic volatility models			
		with j	jumps	335		
		7.2.1	Merton's jump-diffusion setting	335		
		7.2.2	Jump-diffusion with double exponential jumps	339		
		7.2.3	Stochastic volatility models with jumps	340		
	7.3	Specia	al Lévy models and their simulation	340		
		7.3.1	The Esscher transform	341		
		7.3.2	The hyperbolic Lévy model	342		
		7.3.3	The variance gamma model	344		
		7.3.4	Normal inverse Gaussian processes	352		
		7.3.5	Further aspects of Lévy type models	354		
8	Sim	imulating Actuarial Models 35				
	8.1	Introd	fuction	357		
	8.2	Premi	ium principles and risk measures	357		
		8.2.1	Properties and examples of premium principles	358		
		8.2.2	Monte Carlo simulation of premium principles	362		
		8.2.3	Properties and examples of risk measures	362		
		8.2.4	Connection between premium principles and risk			
			measures	365		
	0.0	8.2.5	Monte Carlo simulation of risk measures	366		
	8.3		applications of Monte Carlo methods in life insurance .	377		
		8.3.1	Mortality: Definitions and classical models	378		
		8.3.2	Dynamic mortality models	379		
		8.3.3	Life insurance contracts and premium calculation	383		
		8.3.4	Pricing longevity products by Monte Carlo simulation	385		
	_	8.3.5	Premium reserves and Thiele's differential equation .	387		
	8.4		ating dependent risks with copulas	390		
		8.4.1	Definition and basic properties	390		
		8.4.2	Examples and simulation of copulas	393		
		8.4.3	Application in actuarial models	402		
	8.5	Nonlif	e insurance	403		

	8.5.1	The individual model	404
	8.5.2	The collective model	405
	8.5.3	Rare event simulation and heavy-tailed distributions .	410
	8.5.4	Dependent claims: An example with copulas	413
8.6	Marko	ov chain Monte Carlo and Bayesian estimation	415
	8.6.1	Basic properties of Markov chains	415
	8.6.2	Simulation of Markov chains	419
	8.6.3	Markov chain Monte Carlo methods	420
	8.6.4	MCMC methods and Bayesian estimation	427
	8.6.5	Examples of MCMC methods and Bayesian estimation	
		in actuarial mathematics	429
8.7	Asset-	-liability management and Solvency II	433
	8.7.1	Solvency II	433
	8.7.2	Asset-liability management (ALM)	435
Refere	ences		441
Index			459