Table of Contents

Preface	xiii
Introduction	xv
PART 1. GRAPH THEORY AND NETWORK MODELING	1
Chapter 1. The Space-time Variability of Road Base Accessibility: Application to London	3
1.1. Bases and principles of modeling	3
1.1.1. Modeling of the regional road network	3
1.1.2. Congestion or suboptimal accessibility	6
1.2. Integration of road congestion into accessibility calculations	10
1.2.1. Time slots	10
1.2.2. Evaluation of demand by occupancy rate	11
1.2.3. Evaluation of demand by flows.	12
1.2.4. Calculation of driving times	15
1.3. Accessibility in the Thames estuary	19
1.3.1. Overall accessibility during the evening rush hour (5-6 pm)	21
1.3.2. Performance of the road network between 1 and 2 pm and	
5 and 6 pm	23
1.3.3. Network performance between 1 and 2 pm	23
1.3.4. Network performance between 5 and 6 pm	25
1.3.5. Evolution of network performances related to the Lower Thames	
Crossing (LTC) project	26
1.4. Bibliography	28

vi Oraphs and Networks	vi	Graphs	and	Networks
------------------------	----	--------	-----	----------

Chapter 2. Journey Simulation of a Movement on a Double Scale Fabrice DECOUPIGNY	31
2.1. Visitors and natural environments: multiscale movement 2.1.1. Leisure and consumption of natural environments 2.1.2. Double movement on two distinct scales 2.1.3. Movement by car 2.1.4. Pedestrian movement 2.2. The FRED model 2.2.1. Problems 2.2.2. Structure of the FRED model. 2.3. Part played by the network structure 2.4. Effects of the network on pedestrian diffusion 2.4.1. Determination of the potential path graph: a model of cellular automata 2.4.2. Two constraints of diffusion	322 322 333 344 355 366 377 399 399 400
2.4.3. Verification of the model in a theoretical area	42 44
Chapter 3. Determination of Optimal Paths in a Time-delay Graph Hervé BAPTISTE	47
 3.1. Introduction. 3.2. Floyd's algorithm for arcs with permanent functionality	47 49 51 51 52 60 60 62 62 62 62 63 65 66
Chapter 4. Modeling the Evolution of a Transport System and its Impacts on a French Urban System	67
 4.1. Introduction	67 68 68

4.2.2. The area of reference.	71
4.2.3. Initial parameters	73
4.3. Analysis and interpretation of the results	79
4.3.1. Demographic impacts	79
4.3.2. Alternating migrations revealing demographic trends	82
4.3.3. Evolution of the transport network configuration	84
4.4. Conclusion	86
4.5. Bibliography	88
PART 2. GRAPH THEORY AND NETWORK REPRESENTATION	91
Chapter 5. Dynamic Simulation of Urban Reorganization of	
the City of Tours	93
5.1. Simulations data	96
5.2. The model and its adaptations	99
5.2.1. D.LOCA.T model	99
5.2.2. Opening of the model and its modifications	101
5.2.3. Extension of the theoretical base of the model	102
5.3. Application to Tours	103
5.3.1. Specific difficulties during simulations	103
5.3.2. First results of simulation	104
5.4. Conclusion	109
5.5. Bibliography	109
Chapter 6. From Social Networks to the Sociograph for the Analysis	
of the Actors' Games	111
6.1. The legacy of graphs	112
6.2. Analysis of social networks	117
6.3. The sociograph and sociographies	119
6.4. System of information representation	127
6.5. Bibliography	129
Chapter 7. RESCOM: Towards Multiagent Modeling of Urban	
Communication Spaces.	131
Ossama KHADDOUR	
7.1. Introduction	131
7.2. Quantity of information contained in phatic spaces	132
7.3. Prospective modeling in RESCOM	136
7.3.1. Phatic attraction surfaces	136
7.3.2. Game of choice	138

7.4. Huff's approach	142
7.5. Inference	143
7.6. Conclusion	145
7.8. Bibliography	146
Chapter 8. Traffic Lanes and Emissions of Pollutants	147
8.1. Graphs and pollutants emission by trucks	147
8.1.1. Calculation of emissions.	150
8.1.2. Calculation of the minimum paths	152
8.1.3. Analysis of subsets	154
8.2. Results	159
8.2.1. Section of the A28	159
8.2.2. French graph	165
8.2.3. Subset	168
8.3. Bibliography	173
PART 3. TOWARDS MULTILEVEL GRAPH THEORY	175
Chapter 9. Graph Theory and Representation of Distances: Chronomaps and Other RepresentationsAlain L'HOSTIS	177
9.1 Introduction	177
9.2. A distance on the graph	179
9.3. A distance on the man	180
9.4. Spring maps	182
9.5. Chronomaps: space-time relief maps.	186
9.6. Conclusion	190
9.7. Bibliography	191
Chapter 10. Evaluation of Covisibility of Planning and	
Housing Projects	193
10.1. Introduction	193
10.2. The representation of space and of the network:	
multiresolution topography	194
10.2.1. The VLP system	194
10.2.2. Acquiring geographical data: DMG and DMS	197
10.2.3. The Conceptual Data Model (CDM) starting point of a graph 10.2.4. Principle of multiresolution topography	197
(relations 1 and 2 of the VLP)	198

10.2.5. Need for overlapping of several spatial resolutions	
(relation 2 of the VLP).	199
10.2.6. Why a square grid?	200
10.2.7. Regular and irregular hierarchical tessellation: fractalization	202
10.3. Evaluation of the visual impact of an installation: covisibility	202
10.3.1. Definitions, properties, vocabulary and some results	202
10.3.2. Operating principles of the covisibility algorithm	
(relations 3 and 4 of the VLP)	205
10.3.3. Why a covisibility algorithm of the centroid-centroid type?	212
10.3.4. Comparisons between the method of covisibility and	
recent publications	214
10.4. Conclusion	218
10.5. Bibliography	220
Chapter 11. Dynamics of Von Thünen's Model: Duality and	
Multiple Levels Philippe MATHIS	223
11.1. Hypotheses and ambitions at the origin of this dynamic	
von Thünen model	224
11.2. The current state of research	227
11.3. The structure of the program	227
11.4. Simulations carried out	231
11.4.1. The first simulation: a strong instability in the isolated state	
with only one market town	232
11.4.2. The second simulation: reducing instability	235
11.4.3. The third simulation: the competition of two towns	237
11.4.4. The fourth simulation: the competition between five	
towns of different sizes	239
11.5. Conclusion	241
11.6. Bibliography	244
Chapter 12. The Representation of Graphs: A Specific Domain of	
Graph Theory	245
12.1 Introduction	245
12.1.1 The freedom of drawing a graph of the absorption	245
12.1.1. The freedom of drawing a graph of the absence	216
12.2. Crucka and fractale	240
12.2. Uraphs and fractals	240
12.2.1. Mandelbrot's graphs and iractals.	248
12.2.2. Graph and a tree-structured fractal: Mandelbrot's H-fractal	231
12.2.3. The Pythagoras tree	204
12.2.4. An example of multiplane plotting	200

x Graphs and Networks

12.2.5. The example of the Sierpinski carpet and its use in	
Christaller's theory.	256
12.2.6. Development of networks and fractals in extension	258
12.2.7. Grid of networks: borderline case between extension	
and reduction	259
12.2.8. Application examples of fractals to transport networks.	260
12.3. Nodal graph	261
12.3.1. Planarity and duality	270
12.4. The cellular graph	290
12.5. The faces of the graph: from network to space	296
12.6. Bibliography	299
Chapter 13. Practical Examples	301
13.1. Premises of multiscale analysis	301
13.1.1. Cellular percolation	301
13.1.2. Diffusion of agents reacting to the environment	303
13.1.3. Taking relief into account in the difficulty of the trip	304
13.2. Practical application of the cellular graph: fine modeling of	205
urban transport and spatial spread of pollutant emissions	305
13.2.1. The algorithmic transformation of a graph into a cellular graph	• • •
at the level of arcs	305
13.2.2. The algorithmic transformation of a graph into a cellular graph	
at the level of the nodes	307
13.3. Behavior rules of the agents circulating in the network	309
13.3.1. Strict rules	310
13.3.2. Elementary rules	310
13.3.3. Behavioral rules	311
13.4. Contributions of an MAS and cellular simulation on the basis of	
a graph representing the circulation network	311
13.4.1. Expected simulation results	311
13.4.2. Limits of application of laws considered as general.	312
13.5. Effectiveness of cellular graphs for a truly door-to-door modeling	314
13.6. Conclusion	314
13.7. Bibliography	315
PART 4. GRAPH THEORY AND MAS	317
Chapter 14. Cellular Graphs, MAS and Congestion Modeling Jean-Baptiste BUGUELLOU and Philippe MATHIS	319
14.1. Daily movement modeling: the agent-network relation	320
14.1.1. The modeled space: Indre-et-Loire department	320

14.1.2. Diagram of activities: a step toward the development	
of a schedule	321
14.1.3. Typology of possible agent activities	322
14.1.4. Individual behavior mechanism: the daily scale	323
14.2. Satisfaction and learning	324
14.2.1. The choice of an acceptable solution.	324
14.2.2. Collective learning and convergence of the model toward	
a balanced solution	326
14.2.3. Examination of the transport network	327
14.3. Local congestion	328
14.3.1. The peaks represent different types of intersections.	329
14.3.2. The emergence of congestion fronts on edges	330
14.3.3. Intersection modeling	333
14.3.4. Limited peak capacity: crossings and traffic circles	336
14.3.5. In conclusion on crossings.	351
14.4. From microscopic actions to macroscopic variables a global	
validation test	352
14.4.1. The appropriateness of the model with traditional throughput-	
speed, density-speed and throughput-density curves	352
14.4.2. The distribution of traffic density over time	356
14.4.3. The measure of lost transport time by agents because of	
congestion	357
14.4.4. Spatial validation	358
14.5. Conclusion	359
14.6. Bibliography	360
	2/2
Chapter 15. Disruptions in Public 1 ransport and Role of Information	363
Junen COQUIO and Philippe MATHIS	
15.1. The model and its objectives	364
15.1.1. Public transport	364
15.1.2. Hypotheses to verify	366
15.2. The PERTURB model	367
15.2.1. Theoretical fields mobilized.	367
15.2.2. Working hypotheses	368
15.2.3. Functionalities	369
15.3. The simulation platform.	372
15.4. Simulations in real space: Île-de-France	373
15.4.1. Disruptions simulated in the Île-de-France public transport	374
15.4.2. Node-node calculations: measure of the deterioration of	
relational potentials between two network vertices	375
15.4.3. Unipolar calculations: measures of the deterioration of	
traveling opportunities from a network vertice	381

xii Graphs and Networks

15.4.4. Multipolar calculations: global measures of structural	
impacts	386
15.5. Simulations in theoretical transport systems	388
15.5.1. The initial network and line creation	388
15.5.2. Studied disruption	390
15.5.3. Multipolar calculations	391
15.5.4. Simulations integrating capacity constraints	396
15.6. Discussion on hypotheses	401
15.6.1. Field of structural vulnerability	401
15.6.2. Field of functional vulnerability	402
15.7. Conclusion	403
15.8. Bibliography	405
Conclusion	407
List of Authors	423
Index	425