PREFACE	ix
INTRODUCTION	xi
1. THERMODYNAMICS OF DRY AIR	1
Atmospheric composition	1
Equation of state for dry air	1
The first law of thermodynamics	3
Special processes	6
Entropy	8
Meteorological thermodynamic charts	9
Problems	13
2. WATER VAPOR AND ITS THERMODYNAMIC	
EFFECTS	15
Equation of state for water vapor	15
Clausius–Clapeyron equation	15
Moist air: its vapor content	18
Thermodynamics of unsaturated moist air	20
Ways of reaching saturation	21
Pseudoadiabatic process	23
Problems	25
3. STATIC STABILITY AND PARCEL BUOYANCY	27
Hydrostatic equilibrium	27
Dry adiabatic lapse rate	28
Buoyant force on a parcel of air	29
Stability criteria for dry air	29
The pseudoadiabatic lapse rate	31
Stability criteria for moist air	31
Convective instability	32
Problems	34

4. MIXING AND CONVECTION	36
Mixing of air masses	36
Convective condensation level	39
Adiabatic liquid water content	40
Convection: elementary parcel theory	42
Modification of the elementary theory	44
Problems	51
S EODMATION OF CLOUD DROBLETS	54
General senacts of sloud and presiditation formation	54
Nucleation of liquid water in water vonor	57
Atmospheric condensation puckai	64
Problems	68
Tiolens	00
6. DROPLET GROWTH BY CONDENSATION	69
Diffusional growth of a droplet	69
The growth of droplet populations	75
Some modifications of the diffusional growth theory	80
Problems	85
7. INITIATION OF RAIN IN NONFREEZING	
CLOUDS	86
Microphysical properties of clouds	86
Droplet growth by collision and coalescence	88
The Bowen model	97
Statistical growth: the Telford model	99
Statistical growth: the stochastic coalescence equatio	n 102
Condensation plus stochastic coalescence	109
Concluding remarks	112
Problems	113
8. FORMATION AND GROWTH OF ICE CRYSTALS	115
Nucleation of the ice phase	115
Experiments on heterogeneous ice nucleation	117
Atmospheric ice nuclei	118

vi

Diffusional growth of ice crystals	122
Further growth by accretion	126
The ice crystal process versus coalescence	130
Problems	132

9. RAIN AND SNOW	133
Drop-size distribution	133
Drop breakup	136
Distribution of snowflakes with size	139
Aggregation and breakup of snowflakes	142
Precipitation rates	142
Problems	144

10.	WEATHER RADAR	145
	Principles of radar	145
	The radar equation	147
	The weather radar equation	148
	Relation of Z to precipitation rate	151
	Radar displays and special techniques	152
	Problems	155

11. PRECIPITATION PROCESSES Widespread precipitation

Widespread precipitation158Showers164Precipitation theories169Mesoscale structure of rain171Precipitation efficiency173Problems175

12. SEVERE STORMS AND HAIL177Life cycle of the thunderstorm cell177Severe thunderstorms181Hail growth185

nali giowili		
Problems		

157

190

13. WEATHER MODIFICATION	192
Stimulation of rain and snow	192
Cloud dissipation	195
Hail suppression	195
Problem	196
14. NUMERICAL CLOUD MODELS	198
One-dimensional models with simplified microphysics	199
One-dimensional models with more complex micro-	
physics	203
Two-dimensional cloud models	205
Three-dimensional models	208
REFERENCES	213
INDEX	219
OTHER TITLES IN THE SERIES IN NATURAL	

PHILOSOPHY

viii