Contents

1	Port	t-Based	Modeling of Dynamic Systems	1	
	1.1	Introduction			
		1.1.1	Modeling of dynamic systems	1	
		1.1.2	History of physical systems modeling of engineering systems	2	
		1.1.3	Tools needed for the integrated design of controlled		
			physical systems	5	
		1.1.4	Object-oriented modeling	7	
		1.1.5	Design phases of engineering systems	7	
		1.1.6	Multiple views in the design and modeling process	9	
	1.2	Model	ling philosophy	10	
		1.2.1	'Every model is wrong'	10	
		1.2.2	'A model depends on its problem context'	11	
		1.2.3	Physical components versus conceptual elements	11	
	1.3	Ports i	in dynamical systems models	13	
		1.3.1	Bilateral bonds versus unilateral signals	13	
		1.3.2	Dynamic conjugation versus power conjugation	15	
		1.3.3	Bond graph notation	16	
	1.4	4 Computational causality			
	1.5	5 System versus environment: system boundary			
	1.6	Eleme	ntary behaviors and basic concepts	19	
		1.6.1	Positive orientation and the half-arrow	19	
		1.6.2	Constitutive relations of elements	20	
		1.6.3	Storage	21	
		1.6.4	Irreversible transformation	25	
		1.6.5	Reversible transformation	26	
		1.6.6	Supply & demand (sources & sinks / boundary conditions) .	27	
		1.6.7	Distribution	28	
		1.6.8	Summary of elements	29	
		1.6.9	Modulation and bond activation	29	
	1.7	Causa	l port properties	30	
		1.7.1	Fixed causality	30	

		1.7.2	Preferred causality	31
		1.7.3	Arbitrary causality	32
		1.7.4	Causal constraints	32
		1.7.5	Causal paths	32
	1.8	Causal	analysis: feedback on modeling decisions	33
		1.8.1	Sequential Causality Assignment Procedure (SCAP)	33
		1.8.2	Example of causal analysis	37
	1.9	Hierard	chical modeling	38
		1.9.1	Word bond graphs	38
		1.9.2	Multi-bonds	38
		1.9.3	Multiport generalizations	39
	1.10	Examp	le of the use of the port concept	45
		1.10.1	Problem context	45
		1.10.2	Functional description of the valve	46
		1.10.3	Analysis	46
	1.11	Conclu	lsion	51
	1.12	Future	Trends	51
2	Port	-Hamil	tonian Systems	53
	2.1	From j	unction structures to Dirac structures	53
		2.1.1	From 0- and 1-junctions to Dirac structures	54
		2.1.2	Dirac structures	56
		2.1.3	Examples of Dirac structures	58
	2.2	Port-H	amiltonian systems	61
		2.2.1	Geometric definition of a port-Hamiltonian system	61
		2.2.2	Modulated Dirac structures and port-Hamiltonian systems	
			on manifolds	66
		2.2.3	Input-state-output port-Hamiltonian systems	69
		2.2.4	Input-state-output port-Hamiltonian systems with direct	
			feed-through	71
		2.2.5	Port-Hamiltonian systems with variable topology	72
	2.3	Relatio	onships with classical Hamiltonian and Euler-Lagrange	
		equation	ms	74
		2.3.1	From Euler-Lagrange equations to port-Hamiltonian systems	74
		2.3.2	Port-Hamiltonian systems and Legendre transformations	77
	2.4	Repres	entations of Dirac structures and port-Hamiltonian systems	84
		2.4.1	Representations of Dirac structures	84
		2.4.2	Representations of port-Hamiltonian systems	88
		2.4.3	Elimination of Lagrangian multipliers and constraints	91
		2.4.4	Port-Hamiltonian systems in canonical coordinates -	_
			Casimirs and algebraic constraints	95
		2.4.5	Well-posedness of port-Hamiltonian systems	97
	2.5	Interco	nnection of port-Hamiltonian systems	99
		2.5.1	Composition of Dirac structures	99
		2.5.2	Regularity of interconnections	105

3

	2.5.3	Interconnection of port-Hamiltonian systems				
2.6	Analy	sis of port-Hamiltonian systems 108				
	2.6.1	Passivity				
	2.6.2	Casimirs of port-Hamiltonian systems				
	2.6.3	Algebraic constraints of port-Hamiltonian systems 115				
2.7	Integr	ability of modulated Dirac structures				
2.8	Scatte	Scattering representation of Dirac structures and port-Hamiltonian				
	systen	ns				
	2.8.1	What is "scattering"? 120				
	2.8.2	Scattering representation of ports and Dirac structures 122				
	2.8.3	Inner product scattering representations				
	2.8.4	Interconnection in scattering representation				
Port	t-Based	Modeling in Different Domains				
3.1	Mode	ling of electrical systems				
	3.1.1	Electronic power converter circuits				
	3.1.2	Electromechanical energy conversion in the port-				
		Hamiltonian framework				
	3.1.3	Elementary electromagnet				
	3.1.4	Coupling of the boost converter and the electromagnet 140				
	3.1.5	Variable structure systems				
3.2	Mode	ling of mechanical systems 145				
	3.2.1	Short introduction and motivations				
	3.2.2	Configuration and twist of a rigid body 146				
	3.2.3	Rigid body dynamics 150				
	3.2.4	Rigid mechanisms: interconnections of rigid bodies 154				
	3.2.5	Flexible mechanisms 157				
3.3	Mode	ling of simple elastic systems 158				
	3.3.1	Introduction				
	3.3.2	Simple elasticity				
	3.3.3	The Hamiltonian and Lagrangian picture				
	3.3.4	The linearized scenario160				
	3.3.5	Reduction				
	3.3.6	The Euler-Bernoulli beam				
	3.3.7	Summary 17				
3.4	Port-b	ased modelling and irreversible thermodynamics				
	3.4.1	Basic concepts 172				
	3.4.2	Distributed parameter systems				
	3.4.3	Lumped parameter systems				
	3.4.4	Constitutive equations				
	3.4.5	Port-based modelling examples 194				

4	Infin	ite-Din	ensional Port-Hamiltonian Systems	. 211	
	4.1	Model	ling origins of boundary port-Hamiltonian systems	. 211	
		4.1.1	Conservation law and irreversible thermodynamics	. 212	
		4.1.2	Reversible physical systems of two coupled conservation		
			laws	. 214	
		4.1.3	Dirac structures underlying dissipative physical systems	. 224	
	4.2	Stokes	-Dirac structures and distributed port Hamiltonian systems .	. 228	
		4.2.1	Reminder on differential forms	. 228	
		4.2.2	Conservation laws and balance equations expressed using		
			<i>k</i> -forms	. 233	
		4.2.3	Systems of two conservation laws	. 235	
		4.2.4	Stokes-Dirac structures	. 238	
		4.2.5	Port Hamiltonian formulation of systems of two		
			conservation laws with boundary energy flow	. 244	
		4.2.6	Extension to distributed port variables and scattering		
			boundary variables	. 248	
	4.3	Extens	ion of port-Hamiltonian systems on Stokes-Dirac structures	. 254	
		4.3.1	Timoshenko beam	. 255	
		4.3.2	Nonlinear flexible link	. 259	
		4.3.3	Ideal isentropic fluid	. 265	
	4.4	Conclu	ision	. 270	
=	Com	4mal af 1	Finite Dimensional Bast Hamiltonian Sustance	777	
3	5 1	1 Introduction			
	5.1	Enorm	/ halanging control	. 213	
	5.2	5 2 1	Dissinction obstacle	. 213	
	52	Contro	Dissipation obstacle	. 211	
	5.5	5 2 1	Energy control	. 211	
		520	Energy control	. 200	
		5.5.2	Stabilization by Casimir generation	. 201	
	5 A	3.3.3 A al-i-a	Port control	. 283	
	5.4		Able Dirac structures with dissipation	. 285	
		5.4.1	Achievable Dirac sinuctures	. 285	
		5.4.2	Achievable Resistive structures	. 287	
		5.4.5	Achievable Dirac structures with dissipation	. 288	
		5.4.4	Achievable Casimirs and constraints	. 290	
		5.4.5	The role of energy dissipation	. 292	
		5.4.0	Casimirs and the dissipation obstacle	. 293	
		5.4.7	Casimirs for any resistive relation	. 294	
		5.4.8	Casimirs for a given resistive relation	. 295	
		5.4.9	Application to control	. 295	
	5.5	Casim	irs and stabilization in finite dimensions	. 296	
		5.5.1	Specific Casimirs	. 296	
		5.5.2	Casimirs in extended state-space	. 298	
	5.6	Interco	onnection and damping assignment passivity based-control		
		(IDA-	РВС)	. 301	

		5.6.1	Solving the matching equation	. 304	
		5.6.2	Energy-balancing of IDA-PBC	. 307	
	5.7	Power-	-shaping stabilization	. 308	
		5.7.1	From port-Hamiltonian systems to the Brayton-Moser		
			equations	. 309	
		5.7.2	Geometry of Brayton-Moser's equation	. 312	
		5.7.3	Stabilization by power-shaping	. 314	
		5.7.4	Stabilization by Casimir generation	. 317	
		5.7.5	Remarks	. 318	
6	Angl	lvcis an	d Control of Infinite-Dimensional Systems	310	
v	61	Introdu	a control of mininte-Dimensional Systems	310	
	6.2	Stabilit	ty for infinite dimensional systems	321	
	0.2	621	Arnold's first stability theorem approach	321	
		622	La Salle's theorem approach	321	
	62	Contro	La Sane Suicorem approach	371	
	0.5	631	Pagia results	224	
		637	Control of the Timoshanko beam by domning injection	324	
	61	Contro	I by interconnection and energy shaping	320	
	0.4	6 4 1	Canaral considerations	329	
		642	Interconnections of Direc structures for mixed	. 525	
		0.7.2	port-Hamiltonian systems	331	
		643	Achievable Dirac structures for mixed port-Hamiltonian	. 551	
		0.4.5	systems	335	
		644	Control by Casimir generation	337	
		645	Control by interconnection of a class of mixed		
		0.1.5	nort-Hamiltonian systems	340	
	65	Contro	l by energy shaping of the Timoshenko beam	355	
	0.5	651	Model of the nlant	355	
		652	Casimir functionals for the closed-loop system	357	
		653	Control by energy shaping of the Timoshenko beam	359	
		0.5.5	control by energy shaping of the Thiloshenko beam		
A	Model Transformations and Analysis using Bond Graphs				
	A.1	Model	transformations	. 369	
		A.1.1	Conversion of an ideal physical model into a bond graph	. 369	
		A.1.2	Example: systematic conversion of a simple		
			electromechanical system model into a bond graph		
			representation	. 371	
		A.1.3	Conversion of causal bond graphs into block diagrams	. 372	
		A.1.4	Generation of a set of mixed algebraic and differential		
			equations	. 375	
	A.2	Linear	analysis	. 376	
		A.2.1	Introduction	. 376	
		A.2.2	Impedance analysis using bond graphs	. 378	
	A.3	Port-ba	ased modeling and simulation: a simple example	. 379	

B	Matl	hematic	al Background	381
	B.1	Linear	algebra and differential geometry	381
		B.1.1	Duality in vector spaces	381
		B.1.2	Manifolds	386
		B.1.3	Geometric structures	387
		B.1.4	Lie groups and algebras	388
	B.2	Legend	re transforms and co-energy	392
		B.2.1	Homogeneous functions and Euler's theorem	392
		B.2.2	Homogeneous energy functions	393
		B.2.3	Legendre transform	393
		B.2.4	Co-energy function	394
		B.2.5	Relations for co-energy functions	394
		B.2.6	Legendre transforms in simple thermodynamics	395
		B.2.7	Legendre transforms and causality	395
		B.2.8	Constitutive relations	396
		B.2.9	Maxwell reciprocity	396
		B.2.10	Intrinsic stability	396
		B.2.11	Legendre transforms in mechanics	397
		B.2.12	Legendre transforms in electrical circuits	397
С	Nom	ienclatu	re and Symbols appearing in Sect. 3.4	399
Aut	hor's	Biogra	phies	405
Ref	erenc	es		413