
Chapter 2
Preliminaries

M. Pivk

This chapter discusses basics necessary for the next chapters. All fields are skimped,
because some areas would need more explanation, like quantum information theory,
but this will be out of scope for this chapter.

2.1 Quantum Information Theory

In this section a short introduction to quantum information is given. For detailed
explanation we refer to the book of Nielsen and Chuang [4], where this topic is
amplified.

2.1.1 Quantum Bits

Since Shannon and the beginning of information theory, the bit has been the basic
term in classical information. The states of a bit are either 0 or 1. In accordance with
the classical concept in quantum information exists the qubit (short for quantum bit).
Like for the classical bit two states are possible, |0〉 and |1〉. This special notation
‘|〉’ is called the Dirac notation (or ket) and is the standard notation for states in
quantum mechanics. The major difference to the classical bit, which accepts only
0 or 1, is that a qubit also allows states in between |0〉 and |1〉, which are called
superpositions. Let us denote this by

|ψ〉 = α|0〉 + β|1〉, (2.1)

where α, β ∈ C. Because these factors are complex numbers the state of a qubit
can be described as a vector in a two-dimensional complex vector space C

2, also
called Hilbert space. The states |0〉 and |1〉 form the computational basis and are

M. Pivk (B)
Safety & Security Department, Quantum Technologies, AIT Austrian Institute of Technology
GmbH, Lakeside B01A, 9020 Klagenfurt, Austria, mario.pivk@ait.ac.at;
http://www.ait.ac.at

Pivk, M.: Preliminaries. Lect. Notes Phys. 797, 3–21 (2010)
DOI 10.1007/978-3-642-04831-9 2 c© Springer-Verlag Berlin Heidelberg 2010

4 M. Pivk

orthonormal (see Definition 2.4) to each other, e.g., |0〉 =
(

1
0

)
and |1〉 =

(
0
1

)
.

Since a qubit state is a unit vector, meaning the length is normalized to 1, following
equation must be fulfilled by the scalars α, β:

|α|2 + |β|2 = 1. (2.2)

Using this fact we can rewrite the state of a qubit

|ψ〉 = cos
θ

2
|0〉 + eiϕ sin

θ

2
|1〉, (2.3)

where θ, ϕ are real numbers and define a point on a sphere called the Bloch sphere
(see Fig. 2.1).

Fig. 2.1 Bloch sphere
representation of a qubit

z

y

x

|1〉

|0〉

|ψ〉

θ

ϕ

The measurement of qubits is a problem. In the special case when α or β is 0,
the mapping to the classical bit will result in 1 or 0, respectively, as expected. But
what happens if the qubit is in another superposition, i.e., α, β �= 0? Depending on
the scalars the qubit will be measured as 1 with a certain probability or as 0 with
the complementary probability. Since the scalars fulfil Eq. 2.2, the probability for a
qubit to be measured as 0 is |α|2 and as 1 it is |β|2. We see this in detail in Sect. 2.1.3.

Furthermore in quantum mechanics the scalars α and β are also called the ampli-
tudes of the states |0〉 and |1〉, respectively. But there exists a second term describing
a qubit, the phase. Consider the state eiϕ|ψ〉, where |ψ〉 is a state vector, and ϕ is
a real number. We say that the state eiϕ|ψ〉 is equal to |ψ〉, up to the global phase
factor eiϕ . The measurements for these two states are from the point of statistics the
same as you will see in Sect. 2.1.2.

2 Preliminaries 5

Another kind of phase is the relative phase. Consider these two states

|+〉 = 1√
2

(|0〉 + |1〉) and |−〉 = 1√
2

(|0〉 − |1〉) . (2.4)

In the state |+〉 the amplitude of |1〉 is 1√
2
. In state |−〉 the amplitude has the same

magnitude but a different sign. We define that two amplitudes α1, α2 for some states
differ by a relative phase if there is a real ϕ such that the α1 = eiϕα2. In contrast to
the global phase, where both amplitudes of the state are different by the factor eiϕ ,
the relative phase differs only in one amplitude by the factor eiϕ .

2.1.2 Linear Operators

The state change of qubits is done by linear operators. Therefore a function A is
used, taking vectors from V to W (V and W are vector spaces of C

∗). The most
convenient way to describe such a function is the matrix representation. If matrix A
has m columns and n rows and this matrix is multiplied with the vector |v〉 ∈ C

n we
get a new vector |w〉 ∈ C

m as result. The claim for such a matrix A is to fulfill the
linearity equation [4]

A

(∑
i

ai |vi 〉
)
=

∑
i

ai A|vi 〉. (2.5)

Let A : V −→ W be a linear operator and |v1〉, . . . , |vn〉 be a basis of V and
|w1〉, . . . , |wm〉 a basis of W . There exist complex numbers A1 j , . . . , Amj ,

A|v j 〉 =
∑

i

Ai j |wi 〉 with 1 ≤ i ≤ m, 1 ≤ j ≤ n, (2.6)

which form the matrix representation of the operator A.
Contrarily, a n × m matrix can be understood as the opposite linear operator

sending vectors out of the vector space W to the vector space V by performing the
matrix multiplication with those vectors.

We use a notation which is different to the usual notation in linear algebra.
Table 2.1 lists some frequently used symbols in quantum mechanics. As we know, a
vector can be represented by the sum of the vectors out of the computational basis.

For simplification we take the computational basis v1 =

⎛
⎜⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎟⎠, v2 =

⎛
⎜⎜⎜⎝

0
1
...
0

⎞
⎟⎟⎟⎠, . . . ,

6 M. Pivk

Table 2.1 Summary of some standard quantum mechanical notation

Notation Description

z∗ Complex conjugate of the complex number z. e.g., (1+ i)∗ = 1− i
|v〉 Vector. Also known as a ket. |v〉 =∑

i ai |vi 〉
〈v| Vector dual to |v〉. Also known as a bra. 〈v| =∑

i a∗i |vi 〉T
λ|v〉 Multiplication by a scalar λ. λ|v〉 =∑

i λai |vi 〉
〈v|w〉 Inner product between the vectors |v〉 and |w〉
|v〉〈w| Outer product of |v〉 and |w〉
|v〉 ⊗ |w〉 Tensor product of |v〉 and |w〉
A∗ Complex conjugate of the A matrix
AT Transpose of the A matrix
A† Hermitian conjugate or ad-joint of the A matrix, A† = (AT)∗

〈ϕ|A|ψ〉 Inner product between |ϕ〉 and A|ψ〉

vn =

⎛
⎜⎜⎜⎝

0
0
...
1

⎞
⎟⎟⎟⎠ such that a vector |v〉 =∑

i ai |vi 〉 can also be written as |v〉 =

⎛
⎜⎝

a1
...

an

⎞
⎟⎠.

If an other computational basis is used, it is written explicitly.

2.1.2.1 The Pauli Matrices

Four extremely useful matrices are the Pauli matrices. These are 2 by 2 matrices
and represent some needed effects on qubits. The matrices are

X =
(

0
1

1
0

)
Y =

(
0
i
−i
0

)
Z =

(
1
0

0
−1

)
. (2.7)

The fourth matrix is the identity matrix (I). The Pauli operators X and Z are also
known as bit flip and phase flip operators. If we apply the X operation on a qubit we
see that |0〉 changes to |1〉 and vice versa, i.e.,

X |0〉 =
(

0 1
1 0

)(
1
0

)
=

(
0
1

)
and X |1〉 =

(
0 1
1 0

)(
0
1

)
=

(
1
0

)
.

The Z operator is called phase flip operator because it changes the phase of |1〉
by the sign, i.e.,

Z |+〉 =
(

1 0
0 −1

)(√
2√
2

)
=

(√
2

−√2

)
and

Z |−〉 =
(

1 0
0 −1

)(√
2

−√2

)
=

(√
2√
2

)

2 Preliminaries 7

A possibility to illustrate Y is to multiply the matrix with the imaginary unit i
so we deal only with natural-numbered matrices. Thus, the reformulated version of
Y is

iY =
(

0 1
−1 0

)
.

The iY operator performs both flips, a bit flip and a phase flip, since

iY = Z X =
(

1 0
0 −1

)(
0 1
1 0

)
=

(
0 1
−1 0

)
= i

(
0 −i
i 0

)
.

Therefore, when the iY operator is applied on the states |0〉 and |1〉 we get

iY |0〉 =
(

0 1
−1 0

)(
1
0

)
=

(
0
−1

)
and iY |1〉 =

(
0 1
−1 0

)(
0
1

)
=

(
1
0

)
.

2.1.2.2 Inner Products

An inner product (or scalar product) 〈v|w〉 (usually notation in linear algebra
(|v〉, |w〉)) is a function which takes as input two vectors |v〉 and |w〉 from vector
space V and produces a complex number as output. For example, the inner product
of two n-dimensional vectors over the field of complex numbers is defined as

〈v|w〉 =
∑

i

a∗i bi =
(

a∗1 · · · a∗n
) ·

⎛
⎜⎝

b1
...

bn

⎞
⎟⎠ . (2.8)

The inner product satisfies the following requirements:

1. It is linear in the second argument

(
|v〉,

∑
i

λi |wi 〉
)
=

∑
i

λi (|v〉, |wi 〉) .

2. 〈v|w〉 = 〈w|v〉∗.
3. 〈v|v〉 ≥ 0 with equality if and only if |v〉 = 0.

In the following some definitions in connection with the inner product are given.

Definition 2.1 Let V be a set of vectors over C
n . Then two vectors |v〉, |w〉 ∈ V are

orthogonal, if their inner product is 0.

8 M. Pivk

Definition 2.2 Let V be a set of vectors over C
n . The norm of a vector |v〉 ∈ V is

defined by ‖|v〉‖ = √〈v|v〉. The norm of a vector is often understood as its length
or size.

Definition 2.3 Let V be a set of vectors over C
n . Then a vector |v〉 ∈ V is called

a unit vector or the vector is normalized if ‖|v〉‖ = 1. Normalizing a vector means
dividing it by its norm:

∥∥∥∥ |v〉
‖|v〉‖

∥∥∥∥ = 1.

Definition 2.4 Let V be a set of vectors over C
n . Then a subset of vectors |vi 〉 ∈ V

is called orthonormal if each vector |vi 〉 is a unit vector, and distinct vectors are
orthogonal 〈vi |w j 〉 = 0, i, j = 1...n, i �= j .

For the computational basis of a vector space the last definition of orthonormal
must hold. So those vectors form the spanning set for the vector space and any vector
out of this space can be written as a linear combination.

2.1.2.3 Outer Products

The outer product of two vectors is the contrary multiplication to the inner product.
In opposite to the inner product resulting in a single complex value, the outer product
yields to a matrix:

|v〉〈w| = Ai, j =

⎛
⎜⎝

a1
...

am

⎞
⎟⎠ · (b∗1 · · · b∗n

) =
⎛
⎜⎝

a1b∗1 · · · a1b∗n
...

. . .
...

amb∗1 · · · amb∗n

⎞
⎟⎠ . (2.9)

The outer product representation is a useful way of representing linear operators
which makes use of the inner product. Let |v〉 be a vector in an inner product space
V and |w〉 be a vector in an inner product space W . Define |w〉〈v| to be the linear
operator from V to W like

(|w〉〈v|)(|v′〉) = |w〉〈v|v′〉 = 〈v|v′〉|w〉. (2.10)

The equation imposes at least two interpretations. On the one hand the vector |v′〉
is mapped by the matrix to a vector which lies in W; on the other hand, it is only
the representation of the vector |w〉 multiplied by a complex value.

One application of the outer product notation can be discerned from an impor-
tant result known as the completeness relation for orthonormal vectors. Let |vi 〉 be
orthonormal basis for the vector space V . Then following equation must be fulfilled

∑
i

|vi 〉〈vi | = I. (2.11)

2 Preliminaries 9

2.1.2.4 Tensor Products

The tensor product is an operation to create a larger vector space from two smaller
vector spaces. We have two vector spaces V and W of dimensions m and n, respec-
tively. Then V ⊗ W is an mn dimensional vector space, whose elements are linear
combinations of tensor products of elements |v〉 ∈ V and |w〉 ∈ W .

For example, the tensor product of vectors (1, 2) and (3, 4) is the vector

(
1
2

)
⊗

(
3
4

)
=

⎛
⎜⎜⎝

1× 3
1× 4
2× 3
2× 4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

3
4
6
8

⎞
⎟⎟⎠ .

In the previous example, we perform the operation on two vector spaces, but the
tensor product can also be applied on the linear operators of vector spaces. Assume
A : V → V ′ and B : W → W ′ then A ⊗ B : V ⊗ W → V ′ ⊗ W ′. Suppose A is a
m by n matrix, and B is a p by q matrix. Then we have the matrix representation:

A ⊗ B ≡

⎛
⎜⎜⎜⎝

A11 B A12 B · · · A1n B
A21 B A22 B · · · A2n B

...
...

...
...

Am1 B Am2 B · · · Amn B

⎞
⎟⎟⎟⎠

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

︸ ︷︷ ︸
nq

mp, (2.12)

where A11 B denotes a p by q submatrix. For example, the tensor product of the
Pauli matrices X and Y is

X ⊗ Y =
(

0 · Y 1 · Y
1 · Y 0 · Y

)
=

⎛
⎜⎜⎝

0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

⎞
⎟⎟⎠ .

2.1.3 Quantum Measurement

This section provides ways for describing the effects of measurements on quantum
systems with reference to the four postulates in [4]. Before we can measure a quan-
tum we have to set up the area in which quantum mechanics takes place.

Postulate 1 of [4]: A complex vector space with inner product (also called Hilbert
space) is related with any isolated physical system. This is also known as the state
space of the system. With the unit vectors of the system’s state space (state vectors)
we can span the complete system.

To get more information of a particular system we would measure the state space.
But not in quantum mechanics, here we cannot measure what the state space of the
system is, nor we can tell what the state vector of that system is. The simplest and

10 M. Pivk

most important system is the qubit, described in Sect. 2.1.1. The next postulate gives
the description how states change with time.

Postulate 2 of [4]: The evolution of a closed quantum system is described by a
unitary transformation. That is, the state |ψ〉 of the system at time t1 is related to
the state |ψ ′〉 of the system at time t2 by a unitary operator U which depends only
on the times t1 and t2,

|ψ ′〉 = U |ψ〉. (2.13)

After quantum mechanics does not tell us the state space and quantum state of
a system, it only assures us which unitary operators U describe the change in any
closed quantum system. Such operators we have already seen in Sect. 2.1.2. Setting
up the base, we can continue with the measurement.

Postulate 3 of [4]: Quantum measurements are described by a collection {Mm} of
measurement operators. These are operators acting on the state space of the system
being measured. The index m refers to the measurement outcomes that may occur
in the experiment. If the state of the quantum system is |ψ〉 immediately before the
measurement then the probability that result m occurs is given by

p(m) = 〈ψ |M†
m Mm |ψ〉, (2.14)

and the state of the system after the measurement is

Mm |ψ〉√
〈ψ |M†

m Mm |ψ〉
. (2.15)

The measurement operators satisfy the completeness equation

∑
m

M†
m Mm = I. (2.16)

The completeness equation expresses the fact that the probabilities sum to 1:

∑
m

p (m) =
∑

m

〈ψ |M†
m Mm |ψ〉 = 1. (2.17)

There are different types of measurements, but the most important in our case
is the measurement in the computational basis. Hence, we know that |0〉 and |1〉
form a computational basis for the two-dimensional complex vector space (space of
qubits). As said in a previous section we can map these states onto the states 0 and
1 of a classical bit during measurement. Now we define two measurement operators
M0, M1:

M0 = |0〉〈0| =
(

1 0
0 0

)
and M1 = |1〉〈1| =

(
0 0
0 1

)
. (2.18)

2 Preliminaries 11

Observe that for the operators apply M†
0 = M0, M†

1 = M1 and M2
0 = M0,

M2
1 = M1. A measurement on a qubit with state |ψ〉 = α|0〉 + β|1〉. If we use the

operator M0 for the qubit we obtain a probability that the result is 0

p (0) = 〈ψ |M†
0 M0|ψ〉

= 〈ψ |M0|ψ〉

= (
α∗ β∗

) (1 0
0 0

)(
α

β

)

= (
α∗ β∗

) (α

0

)

= α∗α + 0 = |α|2.

(2.19)

Similarly, we get the probability p (1) = |β|2 for the measurement result 1.
The state of the system after the measurement is

|ψ ′〉 = M0|ψ〉√
〈ψ |M†

0 M0|ψ〉
=

(
1 0
0 0

)(
α

β

)
√
|α|2

=

(
α

0

)

|α| = α|0〉
|α| =

α

|α| |0〉

(2.20)

if the result was 0. Analog the state

|ψ ′〉 = β

|β| |1〉 (2.21)

for the measurement result 1.
Based on Eq. 2.4 if the qubit is in the specific state |+〉 we have α = β = 1√

2
and using Eq. 2.14 we get 0 as well as 1 with probability

p (0) = p (1) = |α|2 = |β|2 =
∣∣∣∣ 1√

2

∣∣∣∣
2

= 1

2
. (2.22)

Due to Eq. 2.15 after the measurement the system’s state is

α

|α| |0〉 =
1√
2∣∣∣ 1√
2

∣∣∣ |0〉 = |0〉 or
β

|β| |1〉 =
1√
2∣∣∣ 1√
2

∣∣∣ |1〉 = |1〉, (2.23)

respectively. We get the same results for the state |−〉.

12 M. Pivk

To perform a correct measurement for such states, we cannot use the compu-
tational basis {|0〉, |1〉}. Therefore we have to use the basis {|+〉, |−〉} (defined
in Eq. 2.4). We have seen that these states are orthonormal to each other, since
〈+|+〉 = 〈−|−〉 = 1 and 〈+|−〉 = 0, so we can use them as computational basis.

As before, we map the two states |+〉, |−〉 onto classical bits, e.g., |+〉 → 0 and
|−〉 → 1. Thus, the two operators are

M0 = |+〉〈+| = 1

2

(
1 1
1 1

)
and M1 = |−〉〈−| = 1

2

(
1 −1
−1 1

)
. (2.24)

Using these measurement operators and the states |+〉 and |−〉 of Eq. 2.4 we get
the probability for the result 0

p (0) = 〈+|M†
0 M0|+〉 = 〈+|+〉〈+|+〉 = 1 · 1 = 1. (2.25)

So for the other case

p (1) = 〈+|M†
1 M1|+〉 = 〈+|−〉〈−|+〉 = 0 · 0 = 0, (2.26)

and the state after the measurement is

M0|+〉√
〈+|M†

0 M0|+〉
= |+〉〈+|+〉√〈+|+〉〈+|+〉 =

1

1
· |+〉 = |+〉. (2.27)

As the probability for the result 0 was 1 the state |+〉 is preserved even after the
measurement.

With the computational basis {|0〉, |1〉} and measurement states |+〉, |−〉, now the
measurement of states |0〉, |1〉 in the computational basis {|+〉, |−〉} yields the same
probability results:

p (0) = 〈0|M†
0 M0|0〉 = 〈0|+〉〈+|0〉 = 1√

2
· 1√

2
= 1

2
,

p (1) = 〈0|M†
1 M1|0〉 = 〈0|−〉〈−|0〉 = 1√

2
· 1√

2
= 1

2
,

p (0) = 〈1|M†
0 M0|1〉 = 〈1|+〉〈+|1〉 = 1√

2
· 1√

2
= 1

2
,

p (1) = 〈1|M†
1 M1|1〉 = 〈1|−〉〈−|1〉 = − 1√

2
· − 1√

2
= 1

2
,

(2.28)

and the state after the measurement is

2 Preliminaries 13

M0|0〉√
〈0|M†

0 M0|0〉
= |+〉〈+|0〉√〈0|+〉〈+|0〉 =

1√
2

1√
2

· |+〉 = |+〉

or
M1|0〉√

〈0|M†
1 M1|0〉

= |−〉〈−|0〉√〈0|−〉〈−|0〉 =
1√
2

1√
2

· |−〉 = |−〉

and
M0|1〉√

〈1|M†
0 M0|1〉

= |+〉〈+|1〉√〈0|+〉〈+|0〉 =
1√
2

1√
2

· |+〉 = |+〉

or
M1|1〉√

〈1|M†
1 M1|1〉

= |−〉〈−|1〉√〈1|−〉〈−|1〉 =
− 1√

2
1√
2

· |−〉 = (−1) · |−〉 = |−〉.

(2.29)

In Sect. 2.1.1 we said if qubits differ only by a global phase factor, they have the
same statistical properties and so we consider them to be the same. Thus, in the last
line in Eq. 2.29 we can neglect the factor −1.

2.1.4 The No-Cloning Theorem

Is it possible to make a copy of an unknown quantum state? The answer is no. In
[10] the no-cloning theorem was presented the first time.

Suppose we have a quantum machine with two slots labeled A and B. Slot A is
the data slot and starts out in a quantum state, |ψ〉. We do not know which state
it has. The goal is to copy the state into slot B, the target slot. We assume that
the target slot starts out in some independent state, |s〉. Thus the initial state of the
copying machine is

|ψ〉 ⊗ |s〉. (2.30)

Some unitary evolution U now effects the copying procedure, ideally,

|ψ〉 ⊗ |s〉 →U U (|ψ〉 ⊗ |s〉) = |ψ〉 ⊗ |ψ〉. (2.31)

Suppose this copying procedure works for two particular states, |ψ〉 and |ϕ〉.
Then we have

U (|ψ〉 ⊗ |s〉) = |ψ〉 ⊗ |ψ〉, (2.32)

U (|ϕ〉 ⊗ |s〉) = |ϕ〉 ⊗ |ϕ〉. (2.33)

Taking the inner product of these two equations gives

〈ψ |ϕ〉 = (〈ψ |ϕ〉)2. (2.34)

14 M. Pivk

But x = x2 has only two solution, x = 0 and x = 1, so either |ψ〉 = |ϕ〉 or
|ψ〉 and |ϕ〉 are orthogonal. If a cloning device would exist it can only clone states
which are orthogonal to one another, and therefore a general quantum cloning device
cannot exist. For example, we have qubits with states |ψ〉 and |0〉 where ψ is not
|1〉, so it is impossible for a quantum cloner to copy them, since these states are not
orthogonal.

2.2 Unconditional Secure Authentication

QKD communication is divided into two channels: the quantum channel and the
classical public channel. On the public channel we have the problem that the adver-
sary Eve can start a man-in-the-middle attack. So the need of authentication for the
communication is essential. Usually authentication is done by public key methods,
e.g., RSA [6] or DSS [3]. But this security is only computational. QKD’s secu-
rity is an unconditional secure, by using such an authentication scheme we will
reduce it also to computational security. Therefore unconditional secure authentica-
tion schemes are necessary for QKD.

Next we present universal hashing, which can be used as an authentication
scheme, where the authentication parties hold a pre-shared secret. This was first
presented by Wegman and Carter [9]. Nowadays, more effective symmetric authen-
tication methods are known. We will use Wegman–Carter authentication, because it
describes an upper bound for needed symmetric authentication key.

2.2.1 Universal Hashing

The fundamental idea of universal hashing is to choose a hash function at random,
independent of the input, such that the probability that any two distinct inputs have
the same hash values is sufficiently low. To render more precisely, let A and B be
finite sets, characterized by the number of elements a = |A| and b = |B|, where
a ≥ b. The hash function h maps an element x ∈ A into an element h(x) ∈ B. For
h and for x, y ∈ A, x �= y, we define δh(x, y) = 1 if h(x) = h(y) and δh(x, y) = 0
otherwise. Meaning δh(x, y) = 1 if and only if the hashed values of x and y collide.
The collection of all hash functions h, mapping the set A to set B, is given as H.
Hence, the number of collisions for the hash function set H and the values x, y is
defined as

δH(x, y) =
∑
h∈H

δh(x, y).

Thus, the probability for the two distinct values can be computed by δH(x, y)/|H|.
The goal is to make this probability small, which can be achieved by a large number
of hash functions |H|. But when increasing |H| the number of bits for specifying the

2 Preliminaries 15

function log2 |H| increases as well. This case would be unpractical for applications
since more random bits are needed. So we have to consider this when choosing H.

Wegman and Carter [1, 9] were the first ones dealing with universal hashing and
they defined some useful properties. Below, a definition of the term universal is
given [8].

Definition 2.5 Let ε be a positive real number. H is ε-almost universal2 (or ε-AU2)
if δH(x, y) ≤ ε|H| for all x, y ∈ A, x �= y.

In other words the collision probability for any two inputs x and y is at most ε.
Note that ε is bounded below by 1/b. In the special case when ε = 1/b we can
skip the term almost and speak only about a universal2 class of hash functions as
Wegman and Carter [1] have done it. Next we define a stricter property for such
classes [8].

Definition 2.6 Let ε be a positive real number. H is ε-almost strongly universal2

(or ε-ASU2) if

(a) for every x1 ∈ A and for every y1 ∈ B, |{h ∈ H : h(x1) = y1}| = |H|/|B|,
(b) for every x1, x2 ∈ A(x1 �= x2) and for every y1, y2 ∈ B,

|{h ∈ H : h(x1) = y1, h(x2) = y2}| ≤ ε|H|/|B|.

The first part of the definition says that any input x1 has the probability 1/b to be
mapped to a hashed value y1 (see Fig. 2.2). The second part concerns the conditional
probability that with given tuple (x1, y1) the probability that x2 is mapped to y2 is
at most ε (see Fig. 2.3). As before in the special case we call it strongly universal2

class of hash functions when ε = 1/b.

A B

1/b
x1

y1

h∈H

Fig. 2.2 Definition 2.6a. Any element of A is mapped to any element of B with probability 1/b

16 M. Pivk

A B
≤ ε

x1
y1

x2

y2

x1 ≠ x2

h∈H

h∈H

Fig. 2.3 Definition 2.6b. With given tuple (x1, y1) any x2 is mapped to y2 with probability ≤ ε

2.2.2 Authentication

In the previous section we define what ε-almost strongly universal2 families of
hash function are. For authentication we can use them in the following manner:
Alice and Bob share a secret random key k and have agreed on a ε-ASU set of hash
function H = {h|h : M → T } (not necessarily secret), where M is the set of
possible messages, T the set of authentication tags, k has the length log2(|H|), and
the hash function in H are ordered {h0, h1, ..., h|H|−1}. Alice sends Bob a message
m ∈ M and the authentication tag t = hk(m). For Bob now it is easy to check
if the message is really from Alice, he compares if the received tag t is equal to
hk(m) and accepts the message as authentic if it does. The key k is then discarded.
The authentication system’s resistance against forgery has to be stated. A forger has
two possibilities to attack the system: First, he can place a new message m ′ into
the channel. Because the key k is random and secret, he does not know which hash
function hk he has to use and his only choice is a guess. Due to the Definition 2.62.6
the probability of success is 1/|T |. Second possibility for the forger is to wait for a
message pair (m, t). With the knowledge of the tuple (m, t), the class of hash func-
tion H and enough computing power, the forger can find all |H|/|T | matching keys
or hash functions, respectively. Nevertheless, according to Definition 2.62.6 with
this knowledge he has a probability of at most ε to guess the correct authentication
tag for a modified message m ′, where m ′ �= m.

So the aim is to make the ε very small concerning the security aspect. This
means to bring it down to 1/|T |, which is the lower bound. The disadvantage when
ε = 1/|T | is that the number of hash functions is very high. Since we need a
string (key) to address the hash function, the size of it increases with log2 |H|, which
results in key length as long as the message length or higher (|k| ∈ O(|m|)). This
is not practicable for applications, so we have to find an ε small enough but which
increases the key length logarithmic in comparison to the message length.

The first solution for an almost strongly universal2 class increasing the key log-
arithmic was presented by Wegman and Carter [9]. Their construction is shown in
Fig. 2.4. Let s = b + log2 log2 a, where b = log2 |T | is the length of an authen-
tication tags and a = log2 |M| is the length of the messages. Construct a strongly

2 Preliminaries 17

Message

 SU2

 SU2 SU2

K
E
Y

Tag

k1

k2

k3

k4

k4

k3 k3

0

 SU2 SU2 SU2 SU2 SU2
k1 k1 k1 k1 k1 SU2

k1

 SU2
k2 SU2

k2 SU2
k2

Fig. 2.4 Schematic of 2/|T |-almost strongly universal2 class of hash function

universal2 class of hash functions, which maps an input string of length 2s to a
hash value of length s. The idea now is to split the message in blocks of length 2s. If
necessary, add zero padding at the end. Now pick a hash function h ∈ H and apply
it on all blocks. The iteration ends with concatenating all outputs. Now start the new
iteration again with splitting this string in blocks of length 2s and picking a hash
function until only one block with length s remains. Finally the tag is the low-order
|T | bits of this block. To generate a tag we need log2 a − log2 b hash functions or
keys, respectively. Before we mentioned that the key length in strongly universal2

classes increases O(|m|). Now the input for the hash function is a block of length
2s. A key for one iteration would be O(2s) = O(s) = O(b + log2 log2 a). We need
log2 a− log2 b iteration resulting in a key length of O((b+ log2 log2 a) · log2 a). For
further use we will use the suggestions in [9], where a strongly universal2 class was
used, needing a key roughly twice the size of the input. With this class the following
equation is definitively an upper bound for the key size:

4 · ((b + log2 log2 a) · log2 a). (2.35)

18 M. Pivk

We achieve that the key increases only logarithmic in comparison to the mes-
sage. To prove that this construction is an ε-almost strongly universal2 class of
hash functions, we have to take a look on the iterations. After every iteration the
probability for two distinct messages m1, m2 to be equal is 1/2s . Since we iterate
log2 a − log2 b times, the probability that the final tags match is at most log2 a/2s ,
which equals to 1/2b = 1/|T |. Because we use a strongly universal2 class of hash
functions the last reduction will be taken m1 to any tag t1 with equal probability and
fulfills the first part of Definition 2.6a. And as long as the penultimate blocks of m1

and m2 are different, m2 will also be taken into any tag t2 with probability less than
1/|T |, but if these blocks are the same, less than 2/|T | hash functions will take m2

to any t2. So ε is 2/|T | and it fulfills the second part of Definition 2.6b.
The second solution presented in [9] tries to reduce the key length needed per

message. Therefore again a strongly universal2 class H is constructed, which maps
M to T . The two communicating parties (Alice and Bob) split the shared key in two
parts. The first part has the length log2 |H| to specify a hash function and the second
part is a sequence (r1, r2, ...) of elements of T , each with length log2 |T |. Secure
authentication requires unique indexed messages. The shared secret key indicates
both parties which hash function h to choose. To create now the authentication tag
ti for a message mi with a unique message number (e.g., i), it is hashed by the hash
function and then exclusive-or’s with ri , so that ti = h(mi)⊕ ri .

For the probability of guessing an authentication tag t for a message m, we define
a set for the tag t as St = {(h, r)|h ∈ H, r ∈ T , h(m1)⊕r = t1, and h(m)⊕r = t},
where m1 and t1 are the first message and its authentication tag. In words, St is the
set of partial keys which map the new message m to the tag t with the knowledge that
m1 is mapped to t1. Since the chosen class of hash function is strongly universal2,
the size of all sets St is the same. The only way to extend these partial keys of St

is to append ri = h(mi) ⊕ ti such that message mi maps to tag ti for i = 2, 3,
Thus, the sets have the same size and m will be assigned to any tag t ∈ T with same
probability as any other tag. So the guessing probability of a forger depends on the
tag length which results in 1/|T |.

Other than the first construction of Wegman and Carter, the needed key size
per message depends on the tag length log2 |T | (neglecting the specifier for the
hash function). The first construction returns one authentication tag for one large
message, in contrast the second construction splits the message in smaller pieces,
numbers them, and generate for each piece an authentication tag. In Fig. 2.5 we
compare both constructions. Let H be a strongly universal2 class of hash functions,
where h : M → T and mi , m j,k ∈ M, m ′ /∈ M, ti ∈ T , t ′ ∈ T ′, |mi | = 2|ti |,
i = 1, . . . , n, j = 1, . . . , |m ′|/|t |, k = 1, . . . , log2(|m ′|/|t |) and lbb(x) : b lower
order bits of x . The additional needed space for the numeration of messages mi is
neglected.

The probability to insert a forge tuple (m ′
i , t ′i), even with knowledge of a tuple

(mi , ti) is 1/|T |. Contrary to the first construction, the probability to insert a forge
tuple (m ′′, t ′′) even with knowledge of a tuple (m ′, t ′) is 2/|T |. For the second con-
struction the input size (message size) of the strongly universal2 class is much
larger than the output size (tag size).

2 Preliminaries 19

Message m’

h1 h2 hlog(|m’|/|t|)

ti = h(mi) Å ri

mj ,k= hk-1(m2j-1 ,k-1)||hk-1(m2j ,k–1)

if mj ,k does not exist mj ,k=0
t’= lb|t’|(hlog(|m’|/|t|)(m1 ,log(|m’|/|t|)))

m1 ,1 m2 ,1 m|m'|/|t| ,1 m1 m2 m3 mn

h r1 r2 r3 rn

t1 t2 t3 tnt’

Split key

Fig. 2.5 The two constructs of Wegman and Carter [9]

2.3 Entropy

Entropy is a key concept in the field of information theory, which is a branch of
applied mathematics concerned with the process to quantifying information. In the
following a short part is presented, which we need in later chapters. In general it
is recommendable to read up on information theory, hence we refer to the book of
Cover and Thomas [2], where the subject is handled in detail.

2.3.1 Shannon Entropy

The Shannon entropy [7] is a basic measure in information theory. Let X be a dis-
crete random variable on a finite set X = {x1, ..., xn} than the Shannon entropy (or
information entropy) H (X) is defined as

H (X) = −
∑
x∈X

p(x) log2 p(x). (2.36)

where p(x) is the probability distribution function of X . In other words, H (X) is the
expected value of the amount of bits needed to specify a value x ∈ X . Therefore it
is easy to see that the entropy is upper bounded by

H (X) ≤ log2 |X |, (2.37)

with equality if p(x) = 1/|X | for each x . For probabilities p(x) = 0 we have the
convention 0 log2 0 = 0. Usually the base of the logarithm is 2, so the entropy is
measured in bit. Other bases are e and 10.

If X and Y are random variables on X and Y , respectively, the conditional Shan-
non entropy H (X |Y) is defined as

20 M. Pivk

H (X |Y) = −
∑
y∈Y

∑
x∈X

p(y)p(x |y) log2 p(x |y), (2.38)

where p(x |y) = p(x,y)
p(y) is the conditional probability distribution of X given Y .

Further, the mutual information I (X ; Y) is defined as

I (X ; Y) =
∑
y∈Y

∑
x∈X

p(x, y) log2
p(x |y)

p(x)
=

∑
y∈Y

∑
x∈X

p(x, y) log2
p(x, y)

p(x)p(y)
. (2.39)

Note that it is called mutual because

I (X ; Y) = I (Y ; X). (2.40)

To understand the coherency between H (X), H (Y), H (X |Y), H (Y |X), and
I (X ; Y) take a look on Fig. 2.6.

Fig. 2.6 Interpretation of
H (X), H (Y), H (X |Y), H (Y |X), and
I (X ; Y)

H(X)
H(Y)

I(X;Y)

H(X|Y)

H(Y|X)

2.3.2 Rényi Entropy

The Rényi entropy [5] of order α is a generalization of Shannon entropy. In the
same manner as Shannon entropy, let X be a discrete random variable on a finite set
X = {x1, ..., xn} than the Rényi entropy of order α Hα(X) with α ≥ 0, α �= 1 is
defined as

Hα(X) = 1

1− α
log2

∑
x∈X

p(x)α, (2.41)

where p(x) is the probability distribution function of X . In the case α → 1, Hα(X)
converges to Shannon entropy H (X). Again we use for the logarithm base 2 and
the output of the entropy is bit. We pick out the Rényi entropy of order 2 (R(X) for
short):

R(X) = H2(X) = − log2

∑
x∈X

p(x)2. (2.42)

2 Preliminaries 21

If we consider only the term in the logarithm, we observe that it equals the col-
lision probability. The collision probability pc(X) of X is defined as the probability
that X results in the same value or event twice in two independent executions. The
connection to Shannon entropy is that it is upper bounded by Shannon

R(X) ≤ H (X), (2.43)

for every probability distribution p(x).
If X and Y are random variables on X and Y , respectively, the conditional Rényi

entropy R(X |Y) is defined as

R(X |Y) = −
∑
y∈Y

p(y) log2

∑
x∈X

p(x |y)2, (2.44)

where p(x |y) is the conditional probability distribution of X given Y . The upper
bound can be derived following Eq. 2.43 as

R(X |Y) ≤ H (X |Y). (2.45)

References

1. Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst. Sci. 18(2),
143–154 (1979)

2. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience (1991). URL
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09–20&path=ASIN/04710625
96

3. National Institute of Standards and Technology: FIPS PUB 186–2: Digital Signature Standard
(DSS). National Institute for Standards and Technology, Gaithersburg, MD, USA (2000). URL
http://www.itl.nist.gov/fipspubs/fip186–2.pdf

4. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge
University Press, Cambridge (2000). URL http://www.amazon.ca/exec/obidos/redirect?tag=
citeulike09–20%&path=ASIN/0521635039

5. Rényi, A.: On measures of information and entropy. Proceedings of the 4th Berkeley Sympo-
sium on Mathematics, Statistics and Probability, pp. 547–561 (1961)

6. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-
key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

7. Shannon, C.E.: A mathematical theory of communication. The Bell System Technical Jour-
nal 27, 379–423, 623–656 (1948). URL http://cm.bell-labs.com/cm/ms/what/shannonday/
shannon1948.pdf

8. Stinson, D.R.: Universal hashing and authentication codes. In: J. Feigenbaum (ed.) CRYPTO,
Lecture Notes in Computer Science, Vol. 576, pp. 74–85. Springer, Heidelberg (1991)

9. Wegman, M.N., Carter, L.: New hash functions and their use in authentication and set equality.
J. Comput. Syst. Sci. 22(3), 265–279 (1981)

10. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803
(1982). DOI 10.1038/299802a0. URL http://dx.doi.org/10.1038/299802a0

